Report Description

Forecast Period

2025-2029

Market Size (2023)

USD 4.55 billion

CAGR (2024-2029)

5.59%

Fastest Growing Segment

Submersible

Largest Market

Asia-Pacific

Market Size (2029)

USD 6.36 billion





Market Overview

Global Solar Pump Market was valued at USD 4.55 billion in 2023 and is anticipated to project robust growth in the forecast period with a CAGR of 5.59% through 2029. Agriculture represents a major driver for the global solar pump market. The need for efficient water management in agriculture, particularly in regions with unreliable or expensive grid power, has led to a growing demand for solar pump systems. Solar pumps provide a reliable and cost-effective solution for farmers, enabling them to irrigate their fields using clean and renewable energy. Government initiatives in many countries offering subsidies and incentives for solar pump adoption in agriculture further boost the market.

Key Market Drivers

Growing Focus on Sustainable Agriculture and Water Management

The global solar pump market is witnessing a significant surge due to an increasing emphasis on sustainable agriculture and efficient water management practices. As the world grapples with the challenges of climate change, traditional irrigation methods are proving to be unsustainable and environmentally harmful. In this context, solar pumps offer a clean and renewable energy solution for water pumping, reducing dependence on conventional fuel-powered pumps.

Sustainable agriculture practices are gaining traction globally, driven by concerns over depleting water resources and the environmental impact of traditional farming methods. Solar pumps play a pivotal role in this shift towards sustainable agriculture by harnessing solar energy to power water pumping systems. Farmers are increasingly adopting solar pumps as a reliable and cost-effective alternative to diesel or electric pumps, enabling them to reduce operational costs and minimize their carbon footprint.

Governments and international organizations are promoting the adoption of solar pumps through subsidies, incentives, and awareness campaigns. These initiatives aim to encourage farmers to embrace solar-powered irrigation systems, thereby contributing to the overall sustainability of agricultural practices. As the global population continues to grow, ensuring food security while minimizing environmental impact becomes a pressing concern, making solar pumps a key driver in the quest for sustainable agriculture and water management.

Technological Advancements and Cost Reduction in Solar Pump Systems

Technological advancements in solar pump systems have played a pivotal role in driving the growth of the global solar pump market. In recent years, there has been a rapid evolution in solar photovoltaic (PV) technology, leading to increased efficiency and affordability of solar panels. These improvements have significantly enhanced the overall performance of solar pump systems, making them more attractive to a broader range of users.

The declining costs of solar panels have been a game-changer, making solar pump systems more economically viable for farmers, businesses, and communities. As the cost of solar energy production continues to decrease, the return on investment for solar pump installations becomes more appealing. This cost-effectiveness has spurred widespread adoption across various sectors, contributing to the overall expansion of the global solar pump market.

Innovations in energy storage technologies have addressed the intermittent nature of solar power, enabling solar pumps to operate during periods of low sunlight or at night. Battery storage systems allow solar pumps to store excess energy generated during peak sunlight hours for later use, ensuring a continuous and reliable water supply. These technological advancements not only enhance the performance of solar pump systems but also contribute to the overall growth and sustainability of the global solar pump market.

Rising Awareness of Energy Independence and Off-Grid Solutions

The increasing awareness of the benefits of energy independence and the desire for off-grid solutions are significant drivers propelling the global solar pump market. Many regions, particularly in developing countries, face challenges related to unreliable or non-existent electricity grids, limiting access to conventional energy sources. In such areas, solar pumps offer a decentralized and off-grid solution for water pumping needs.

The desire for energy independence is not limited to remote or off-grid locations. Even in areas with access to traditional power sources, businesses and communities are recognizing the advantages of reducing dependency on centralized electricity grids. Solar pumps provide an independent and sustainable energy source, allowing users to mitigate the risks associated with power outages, voltage fluctuations, and escalating electricity costs.

The global push towards achieving renewable energy targets and reducing greenhouse gas emissions has amplified the appeal of solar pumps. Governments and organizations are actively promoting the adoption of solar-powered solutions as part of their broader renewable energy strategies. This increased awareness of the environmental and economic benefits of solar pump systems is driving a growing market demand, fostering a shift towards decentralized, off-grid water pumping solutions around the world.

 

Download Free Sample Report

Key Market Challenges

Initial Capital Investment and Affordability Barriers

One of the primary challenges facing the global solar pump market is the significant initial capital investment required for the installation of solar pump systems. While the long-term operational costs are lower compared to traditional fuel-powered pumps, the upfront expenses for purchasing and installing solar panels, inverters, and associated equipment can be a barrier for many potential users, especially in developing countries and small-scale agricultural operations.

Affordability remains a critical factor influencing the adoption of solar pump technology. Despite the decreasing costs of solar panels and associated components, the initial investment can still be prohibitive for small-scale farmers and businesses with limited financial resources. To address this challenge, governments, non-governmental organizations, and financial institutions need to collaborate to provide subsidies, grants, or affordable financing options, making solar pump systems more accessible to a broader range of users.

Public awareness campaigns and education programs can also play a crucial role in dispelling misconceptions about the high costs of solar pump installations. As stakeholders work towards making solar pump technology more affordable, overcoming this financial barrier is essential to unlocking the market's full potential and ensuring widespread adoption.

Lack of Technical Expertise and Maintenance Infrastructure

Another significant challenge confronting the global solar pump market is the lack of technical expertise and adequate maintenance infrastructure, particularly in rural and remote areas where these systems are often deployed. While solar pump technology is generally reliable and low-maintenance, occasional technical issues may arise, and routine maintenance is essential to ensure optimal performance and longevity.

In many cases, end-users, such as farmers or small businesses, may lack the necessary technical knowledge to troubleshoot and address minor problems. Additionally, the absence of local service providers or maintenance infrastructure in remote areas can lead to delays in repairs, potentially impacting agricultural productivity and water supply reliability.

Addressing this challenge requires a multi-faceted approach. Training programs and capacity-building initiatives can empower local communities to understand the basics of solar pump technology, enabling them to perform routine maintenance and troubleshoot minor issues. Moreover, the development of a network of trained technicians and local service providers can ensure timely and effective repairs, reducing downtime and enhancing the overall reliability of solar pump systems.

Variability in Solar Resource Availability and Weather Dependency

The inherent variability in solar resource availability poses a significant challenge to the global solar pump market. Solar pump systems rely on sunlight to generate electricity, making their performance dependent on weather conditions and daily sunlight exposure. In regions with irregular weather patterns, seasonal changes, or frequent cloud cover, solar pump efficiency can be compromised, affecting water pumping capabilities.

This weather dependency introduces a level of unpredictability and intermittency to solar pump operations, impacting the reliability of water supply for agricultural irrigation and other applications. During periods of insufficient sunlight, backup solutions such as energy storage systems or alternative power sources may be required to ensure continuous water pumping.

To address this challenge, ongoing research and development efforts are focused on improving the efficiency of solar panels, enhancing energy storage technologies, and developing hybrid systems that integrate multiple power sources. Additionally, accurate weather forecasting tools can assist users in planning for periods of reduced solar resource availability, allowing for proactive measures to ensure uninterrupted water supply. Mitigating the impact of weather variability is crucial for maximizing the reliability and effectiveness of solar pump systems across diverse geographical regions.

Key Market Trends

Integration of Smart Technologies in Solar Pump Systems

A notable trend shaping the global solar pump market is the increasing integration of smart technologies to enhance the efficiency, monitoring, and control of solar pump systems. As advancements in the Internet of Things (IoT) and automation continue to evolve, solar pump manufacturers are incorporating smart features into their products, transforming traditional pump systems into intelligent, connected solutions.

Another key aspect of this trend is the implementation of remote monitoring and control capabilities. Through IoT-enabled sensors and communication technologies, users can remotely monitor the performance of their solar pump systems in real-time. This functionality allows for proactive maintenance, early detection of issues, and optimization of energy consumption. Farmers and businesses can receive alerts about potential problems, track energy production, and adjust pump settings through user-friendly interfaces, often accessible via mobile applications or web platforms.

Smart solar pump systems are increasingly equipped with data analytics capabilities, providing users with valuable insights into water usage patterns, energy efficiency, and overall system performance. This data-driven approach enables users to make informed decisions, optimize resource utilization, and maximize the return on investment in their solar pump installations.

As the world becomes more connected, the integration of smart technologies into solar pump systems is expected to continue evolving. This trend not only enhances the functionality and reliability of solar pumps but also aligns with broader goals of resource efficiency and sustainable management in agriculture, water supply, and other sectors.

Emergence of Decentralized Solar Pumping Solutions

A significant trend in the global solar pump market is the growing popularity of decentralized solar pumping solutions. Traditionally, water pumping infrastructure relied on centralized, grid-connected systems that distributed water over large distances. However, decentralized solar pump systems offer a more flexible and sustainable alternative, particularly in regions with unreliable or non-existent electricity grids.

Decentralized solar pumping involves the installation of solar-powered pumps directly at the point of water extraction, eliminating the need for extensive distribution networks. This approach provides numerous advantages, including reduced transmission losses, increased energy efficiency, and improved water accessibility for remote or off-grid locations.

In agriculture, decentralized solar pumps empower farmers to harness water from local sources, such as wells or rivers, without being constrained by grid availability. This not only reduces the environmental impact associated with long-distance water distribution but also enhances the resilience of agricultural operations to fluctuations in grid power.

Decentralized solar pumping aligns with the broader trend of energy independence. Communities and businesses are increasingly seeking ways to generate their own power, reducing reliance on centralized energy grids and mitigating the risks associated with power outages. As the technology and infrastructure for decentralized solar pumping mature, it is anticipated that more regions will transition towards localized and off-grid water pumping solutions, fostering sustainability and self-sufficiency in water supply.

Segmental Insights

Operation Insights

The AC Pump segment emerged as the dominating segment in 2023. The AC (Alternating Current) pump segment within the global solar pump market represents a significant component of the overall industry landscape. AC pumps are a type of solar pump that utilizes alternating current as opposed to direct current, offering specific advantages and applications in various sectors.

The AC pump segment has witnessed considerable growth due to its adaptability to diverse applications and its ability to meet the demands of both agricultural and non-agricultural sectors. One of the primary drivers of growth in this segment is the compatibility of AC pumps with existing power infrastructure. Unlike DC pumps, AC pumps can be easily integrated into conventional power grids, making them a preferred choice in areas where grid connectivity is available.

The growing adoption of solar energy in residential, commercial, and industrial settings has fueled the demand for AC solar pumps. These pumps are employed for various purposes such as water supply, irrigation, and industrial processes. The ability of AC pumps to handle higher flow rates and lift requirements makes them suitable for a wide range of applications, contributing to their market prominence.

The AC pump segment plays a pivotal role in the global solar pump market, driven by its adaptability, compatibility with existing infrastructure, and continuous technological advancements. As the demand for sustainable and off-grid water pumping solutions continues to rise, the AC pump segment is likely to see further growth, offering a reliable and efficient alternative for a diverse range of applications across various sectors. Industry players, policymakers, and innovators will play key roles in shaping the future trajectory of the AC pump segment within the dynamic landscape of the global solar pump market.

Download Free Sample Report

Regional Insights

Asia-Pacific emerged as the dominating region in 2023, holding the largest market share. The Asia-Pacific region emerges as a dynamic and influential player in the global solar pump market, driven by a combination of factors including agricultural needs, increasing energy demand, and the pursuit of sustainable development.

The market in Asia-Pacific is witnessing robust growth, driven by supportive government policies, incentives, and awareness programs promoting the adoption of renewable energy solutions. Increasing investments in rural electrification and off-grid power solutions further contribute to the expansion of the solar pump market in the region.

Agriculture plays a pivotal role in the Asia-Pacific solar pump market, with a strong focus on improving water management practices. The region faces challenges related to water scarcity and inefficient irrigation methods, making solar pumps an attractive solution for sustainable agriculture. Governments in countries like India have implemented subsidy programs and financial incentives to encourage farmers to adopt solar pump systems, contributing to increased agricultural productivity and water use efficiency.

Water management initiatives, coupled with the adoption of precision agriculture techniques facilitated by solar pumps, contribute to resource optimization and environmental sustainability. The Asia-Pacific region's commitment to achieving food security and sustainable farming practices further fuels the demand for solar pumps in the agricultural sector.

The Asia-Pacific region is characterized by a significant rural population, and many areas lack reliable access to electricity. Solar pumps play a crucial role in off-grid electrification, providing a reliable source of power for various applications beyond agriculture, such as drinking water supply, community development projects, and rural electrification. The decentralized nature of solar pumps allows for the creation of microgrids, empowering communities and contributing to socio-economic development.

Governments across the region are increasingly recognizing the potential of solar pumps in addressing energy access challenges in remote areas. Policies and programs focused on rural development and renewable energy deployment contribute to the growth of the solar pump market as a vital component of broader electrification and sustainable development initiatives.

The future outlook for the Asia-Pacific solar pump market remains optimistic, driven by evolving energy needs, climate change concerns, and a growing emphasis on sustainable development. Continued advancements in technology, increased affordability, and supportive policies are expected to further propel the adoption of solar pumps, making a significant contribution to the region's energy transition and agricultural sustainability. As the market continues to mature, Asia-Pacific is poised to maintain its position as a key player in the global solar pump landscape.

Recent Developments

  • In September 2021, Grundfos expanded its line of solar-powered submersible pumps with the introduction of the SQFlex Large. In response to the rising demand for solar energy pumps and the region's varied weather, the firm increased its product line across Asia and the Pacific.

Key Market Players

  • Pengyang Pump Taizhou Co., Ltd.
  • Advanced Power Inc.
  • BERNT LORENTZ GmbH
  • C.R.I. Pumps Private Liited
  • Aqua Group
  • Lubi Electronics LLP
  • Oswal Pump Ltd.
  • Grundfos Holding A/S
  • TATA Power Solar Systems Ltd.
  • Shakti Pumps (India) Ltd.  

By Product

By Operation

By End-User

By Region

  • Surface Suction
  • Submersible
  • Floating
  • AC Pump
  • DC Pump
  • Agriculture
  • Water Management
  • Others
  • North America
  • Europe
  • Asia-Pacific
  • South America
  • Middle East & Africa

 

Report Scope:

In this report, the Global Solar Pump Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

  • Solar Pump Market, By Product:

o   Surface Suction

o   Submersible

o   Floating

  • Solar Pump Market, By Operation:

o   AC Pump

o   DC Pump

  • Solar Pump Market, By End-User:

o   Agriculture

o   Water Management

o   Others                     

  • Solar Pump Market, By Region:

o   North America

§  United States

§  Canada

§  Mexico

o   Europe

§  France

§  United Kingdom

§  Italy

§  Germany

§  Spain

§  Netherlands

§  Belgium

o   Asia-Pacific

§  China

§  India

§  Japan

§  Australia

§  South Korea

§  Thailand

§  Malaysia

o   South America

§  Brazil

§  Argentina

§  Colombia

§  Chile

o   Middle East & Africa

§  South Africa

§  Saudi Arabia

§  UAE

§  Turkey

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Solar Pump Market.

Available Customizations:

Global Solar Pump Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Global Solar Pump Market is an upcoming report to be released soon. If you wish an early delivery of this report or want to confirm the date of release, please contact us at [email protected]

Table of content

1.         Product Overview

1.1.    Market Definition

1.2.    Scope of the Market

1.2.1.Markets Covered

1.2.2.Years Considered for Study

1.2.3.Key Market Segmentations

2.         Research Methodology

2.1.    Objective of the Study

2.2.    Baseline Methodology

2.3.    Formulation of the Scope

2.4.    Assumptions and Limitations

2.5.    Sources of Research

2.5.1.Secondary Research

2.5.2.Primary Research

2.6.    Approach for the Market Study

2.6.1.The Bottom-Up Approach

2.6.2.The Top-Down Approach

2.7.    Methodology Followed for Calculation of Market Size & Market Shares

2.8.    Forecasting Methodology

2.8.1.Data Triangulation & Validation

3.         Executive Summary

4.         Impact of COVID-19 on Global Solar Pump Market

5.         Voice of Customer

6.         Global Solar Pump Market Overview

7.         Global Solar Pump Market Outlook

7.1.    Market Size & Forecast

7.1.1.By Value

7.2.    Market Share & Forecast

7.2.1.By Product (Surface Suction, Submersible and Floating)

7.2.2.By Operation (AC Pump and DC Pump)

7.2.3.By End-User (Agriculture, Water Management and Others)

7.2.4.By Region (North America, Europe, South America, Middle East & Africa, Asia-Pacific)

7.3.    By Company (2023)

7.4.    Market Map

8.         North America Solar Pump Market Outlook

8.1.    Market Size & Forecast

8.1.1.By Value

8.2.    Market Share & Forecast

8.2.1.By Product

8.2.2.By Operation

8.2.3.By End-User

8.2.4.By Country

8.3.    North America: Country Analysis

8.3.1.United States Solar Pump Market Outlook

8.3.1.1.      Market Size & Forecast

8.3.1.1.1.    By Value

8.3.1.2.      Market Share & Forecast

8.3.1.2.1.    By Product

8.3.1.2.2.    By Operation

8.3.1.2.3.    By End-User

8.3.2.Canada Solar Pump Market Outlook

8.3.2.1.      Market Size & Forecast

8.3.2.1.1.    By Value

8.3.2.2.      Market Share & Forecast

8.3.2.2.1.    By Product

8.3.2.2.2.    By Operation

8.3.2.2.3.    By End-User

8.3.3.Mexico Solar Pump Market Outlook

8.3.3.1.      Market Size & Forecast

8.3.3.1.1.    By Value

8.3.3.2.      Market Share & Forecast

8.3.3.2.1.    By Product

8.3.3.2.2.    By Operation

8.3.3.2.3.    By End-User

9.         Europe Solar Pump Market Outlook

9.1.    Market Size & Forecast

9.1.1.By Value

9.2.    Market Share & Forecast

9.2.1.By Product

9.2.2.By Operation

9.2.3.By End-User

9.2.4.By Country

9.3.    Europe: Country Analysis

9.3.1.Germany Solar Pump Market Outlook

9.3.1.1.      Market Size & Forecast

9.3.1.1.1.    By Value

9.3.1.2.      Market Share & Forecast

9.3.1.2.1.    By Product

9.3.1.2.2.    By Operation

9.3.1.2.3.    By End-User

9.3.2.France Solar Pump Market Outlook

9.3.2.1.      Market Size & Forecast

9.3.2.1.1.    By Value

9.3.2.2.      Market Share & Forecast

9.3.2.2.1.    By Product

9.3.2.2.2.    By Operation

9.3.2.2.3.    By End-User

9.3.3.United Kingdom Solar Pump Market Outlook

9.3.3.1.      Market Size & Forecast

9.3.3.1.1.    By Value

9.3.3.2.      Market Share & Forecast

9.3.3.2.1.    By Product

9.3.3.2.2.    By Operation

9.3.3.2.3.    By End-User

9.3.4.Italy Solar Pump Market Outlook

9.3.4.1.      Market Size & Forecast

9.3.4.1.1.    By Value

9.3.4.2.      Market Share & Forecast

9.3.4.2.1.    By Product

9.3.4.2.2.    By Operation

9.3.4.2.3.    By End-User

9.3.5.Spain Solar Pump Market Outlook

9.3.5.1.      Market Size & Forecast

9.3.5.1.1.    By Value

9.3.5.2.      Market Share & Forecast

9.3.5.2.1.    By Product

9.3.5.2.2.    By Operation

9.3.5.2.3.    By End-User

9.3.6.Netherlands Solar Pump Market Outlook

9.3.6.1.      Market Size & Forecast

9.3.6.1.1.    By Value

9.3.6.2.      Market Share & Forecast

9.3.6.2.1.    By Product

9.3.6.2.2.    By Operation

9.3.6.2.3.    By End-User

9.3.7.Belgium Solar Pump Market Outlook

9.3.7.1.      Market Size & Forecast

9.3.7.1.1.    By Value

9.3.7.2.      Market Share & Forecast

9.3.7.2.1.    By Product

9.3.7.2.2.    By Operation

9.3.7.2.3.    By End-User

10.      South America Solar Pump Market Outlook

10.1. Market Size & Forecast

10.1.1.     By Value

10.2. Market Share & Forecast

10.2.1.     By Product

10.2.2.     By Operation

10.2.3.     By End-User

10.2.4.     By Country

10.3. South America: Country Analysis

10.3.1.     Brazil Solar Pump Market Outlook

10.3.1.1.   Market Size & Forecast

10.3.1.1.1. By Value

10.3.1.2.   Market Share & Forecast

10.3.1.2.1. By Product

10.3.1.2.2. By Operation

10.3.1.2.3. By End-User

10.3.2.     Colombia Solar Pump Market Outlook

10.3.2.1.   Market Size & Forecast

10.3.2.1.1. By Value

10.3.2.2.   Market Share & Forecast

10.3.2.2.1. By Product

10.3.2.2.2. By Operation

10.3.2.2.3. By End-User

10.3.3.     Argentina Solar Pump Market Outlook

10.3.3.1.   Market Size & Forecast

10.3.3.1.1. By Value

10.3.3.2.   Market Share & Forecast

10.3.3.2.1. By Product

10.3.3.2.2. By Operation

10.3.3.2.3. By End-User

10.3.4.     Chile Solar Pump Market Outlook

10.3.4.1.   Market Size & Forecast

10.3.4.1.1. By Value

10.3.4.2.   Market Share & Forecast

10.3.4.2.1. By Product

10.3.4.2.2. By Operation

10.3.4.2.3. By End-User

11.      Middle East & Africa Solar Pump Market Outlook

11.1. Market Size & Forecast

11.1.1.     By Value

11.2. Market Share & Forecast

11.2.1.     By Product

11.2.2.     By Operation

11.2.3.     By End-User

11.2.4.     By Country

11.3. Middle East & Africa: Country Analysis

11.3.1.     Saudi Arabia Solar Pump Market Outlook

11.3.1.1.   Market Size & Forecast

11.3.1.1.1. By Value

11.3.1.2.   Market Share & Forecast

11.3.1.2.1. By Product

11.3.1.2.2. By Operation

11.3.1.2.3. By End-User

11.3.2.     UAE Solar Pump Market Outlook

11.3.2.1.   Market Size & Forecast

11.3.2.1.1. By Value

11.3.2.2.   Market Share & Forecast

11.3.2.2.1. By Product

11.3.2.2.2. By Operation

11.3.2.2.3. By End-User

11.3.3.     South Africa Solar Pump Market Outlook

11.3.3.1.   Market Size & Forecast

11.3.3.1.1. By Value

11.3.3.2.   Market Share & Forecast

11.3.3.2.1. By Product

11.3.3.2.2. By Operation

11.3.3.2.3. By End-User

11.3.4.     Turkey Solar Pump Market Outlook

11.3.4.1.   Market Size & Forecast

11.3.4.1.1. By Value

11.3.4.2.   Market Share & Forecast

11.3.4.2.1. By Product

11.3.4.2.2. By Operation

11.3.4.2.3. By End-User

12.      Asia-Pacific Solar Pump Market Outlook

12.1. Market Size & Forecast

12.1.1.     By Value

12.2. Market Share & Forecast

12.2.1.     By Product

12.2.2.     By Operation

12.2.3.     By End-User

12.2.4.     By Country

12.3. Asia-Pacific: Country Analysis

12.3.1.     China Solar Pump Market Outlook

12.3.1.1.   Market Size & Forecast

12.3.1.1.1. By Value

12.3.1.2.   Market Share & Forecast

12.3.1.2.1. By Product

12.3.1.2.2. By Operation

12.3.1.2.3. By End-User

12.3.2.     India Solar Pump Market Outlook

12.3.2.1.   Market Size & Forecast

12.3.2.1.1. By Value

12.3.2.2.   Market Share & Forecast

12.3.2.2.1. By Product

12.3.2.2.2. By Operation

12.3.2.2.3. By End-User

12.3.3.     Japan Solar Pump Market Outlook

12.3.3.1.   Market Size & Forecast

12.3.3.1.1. By Value

12.3.3.2.   Market Share & Forecast

12.3.3.2.1. By Product

12.3.3.2.2. By Operation

12.3.3.2.3. By End-User

12.3.4.     South Korea Solar Pump Market Outlook

12.3.4.1.   Market Size & Forecast

12.3.4.1.1. By Value

12.3.4.2.   Market Share & Forecast

12.3.4.2.1. By Product

12.3.4.2.2. By Operation

12.3.4.2.3. By End-User

12.3.5.     Australia Solar Pump Market Outlook

12.3.5.1.   Market Size & Forecast

12.3.5.1.1. By Value

12.3.5.2.   Market Share & Forecast

12.3.5.2.1. By Product

12.3.5.2.2. By Operation

12.3.5.2.3. By End-User

12.3.6.     Thailand Solar Pump Market Outlook

12.3.6.1.   Market Size & Forecast

12.3.6.1.1. By Value

12.3.6.2.   Market Share & Forecast

12.3.6.2.1. By Product

12.3.6.2.2. By Operation

12.3.6.2.3. By End-User

12.3.7.     Malaysia Solar Pump Market Outlook

12.3.7.1.   Market Size & Forecast

12.3.7.1.1. By Value

12.3.7.2.   Market Share & Forecast

12.3.7.2.1. By Product

12.3.7.2.2. By Operation

12.3.7.2.3. By End-User

13.      Market Dynamics

13.1. Drivers

13.2. Challenges

14.      Market Trends and Developments

15.      Company Profiles

15.1.  Pengyang Pump Taizhou Co., Ltd.

15.1.1.     Business Overview

15.1.2.     Key Revenue and Financials  

15.1.3.     Recent Developments

15.1.4.     Key Personnel/Key Contact Person

15.1.5.     Key Product/Services Offered

15.2.  Advancd Power Inc.

15.2.1.     Business Overview

15.2.2.     Key Revenue and Financials  

15.2.3.     Recent Developments

15.2.4.     Key Personnel/Key Contact Person

15.2.5.     Key Product/Services Offered

15.3.  Bernt Lorentz GmbH

15.3.1.     Business Overview

15.3.2.     Key Revenue and Financials  

15.3.3.     Recent Developments

15.3.4.     Key Personnel/Key Contact Person

15.3.5.     Key Product/Services Offered

15.4.  C.R.I. Pumps Private Ltd.

15.4.1.     Business Overview

15.4.2.     Key Revenue and Financials  

15.4.3.     Recent Developments

15.4.4.     Key Personnel/Key Contact Person

15.4.5.     Key Product/Services Offered

15.5.  Aqua Group

15.5.1.     Business Overview

15.5.2.     Key Revenue and Financials  

15.5.3.     Recent Developments

15.5.4.     Key Personnel/Key Contact Person

15.5.5.     Key Product/Services Offered

15.6.  Lubi Electronics LLP

15.6.1.     Business Overview

15.6.2.     Key Revenue and Financials  

15.6.3.     Recent Developments

15.6.4.     Key Personnel/Key Contact Person

15.6.5.     Key Product/Services Offered

15.7.  Oswal Pump Ltd.

15.7.1.     Business Overview

15.7.2.     Key Revenue and Financials  

15.7.3.     Recent Developments

15.7.4.     Key Personnel/Key Contact Person

15.7.5.     Key Product/Services Offered

15.8.  Grundfos Holding A/S

15.8.1.     Business Overview

15.8.2.     Key Revenue and Financials  

15.8.3.     Recent Developments

15.8.4.     Key Personnel/Key Contact Person

15.8.5.     Key Product/Services Offered

15.9.  TATA Power Solar Systems Ltd.

15.9.1.     Business Overview

15.9.2.     Key Revenue and Financials  

15.9.3.     Recent Developments

15.9.4.     Key Personnel/Key Contact Person

15.9.5.     Key Product/Services Offered

15.10.   Shakti Pumps (India) Ltd.

15.10.1.   Business Overview

15.10.2.   Key Revenue and Financials  

15.10.3.   Recent Developments

15.10.4.   Key Personnel/Key Contact Person

15.10.5.   Key Product/Services Offered

16.      Strategic Recommendations

17.      About Us & Disclaimer

Figures and Tables

Frequently asked questions

down-arrow

The market size of the Global Solar Pump Market was USD 4.55 billion in 2023.

down-arrow

The AC pumps by operation segment demonstrated significant dominance in 2023. The AC pump segment has experienced significant growth due to its versatility in various applications and its capacity to fulfill the needs of both agricultural and non-agricultural sectors.

down-arrow

Asia-Pacific dominated the market in 2023. Many countries in the Asia-Pacific region, such as India, China, and Australia, have implemented policies and subsidies to promote the use of renewable energy sources, including solar pumps. These initiatives aim to reduce dependency on fossil fuels, support sustainable agriculture, and provide reliable water supply for irrigation and drinking purposes.

down-arrow

Rising Awareness of Energy Independence, Government Subsidies & Initiatives, Increased Agricultural Productivity are the major drivers for the Global Solar Pump Market.

profile

Parvati Sharma

Account Manager BD
Press Release

Solar Pump Market is expected to grow at a CAGR of 5.59% through 2029

May, 2024

Global Solar Pump Market is expected to grow owing to desire for energy independence and off-grid solutions throughout the forecast period