Main Content start here
Main Layout
Report Description

Report Description

Forecast Period

2024-2028

Market Size (2022)

USD 6.03 Billion

CAGR (2023-2028)

25.82%

Fastest Growing Segment

Filament

Largest Market

North America

 

Market Overview

The global Metal 3D Printing market has emerged as a transformative force across various industries, redefining the way manufacturers conceptualize, design, and produce metal components. Leveraging the power of additive manufacturing, Metal 3D Printing has unlocked new frontiers in precision engineering, enabling the creation of complex geometries and high-performance parts with unmatched efficiency. This market, characterized by continuous innovation and technological advancements, has witnessed remarkable growth in recent years.

Technological Advancements: Metal 3D Printing has evolved significantly in terms of technology and materials. Innovations in printing techniques, including powder bed fusion and directed energy deposition, have expanded the range of printable metals, offering solutions that cater to diverse industry needs. Titanium, aluminum, stainless steel, and nickel-based alloys are among the metals increasingly used in Metal 3D Printing.

Diverse Industry Applications: The versatility of Metal 3D Printing has paved the way for applications in aerospace, automotive, healthcare, defense, and more. In aerospace, it has revolutionized the production of lightweight, complex components. The automotive sector harnesses it for rapid prototyping and custom part manufacturing. Healthcare benefits from patient-specific implants and prosthetics.

Supply Chain Optimization: Metal 3D Printing has disrupted traditional supply chains. It enables on-demand production, reducing inventory costs and eliminating the need for large warehouses. Companies can print components as needed, reducing waste and mitigating supply chain risks.

Customization and Design Freedom: One of the key strengths of Metal 3D Printing is its ability to offer customization and design freedom. This has profound implications for industries where unique, specialized parts are essential, such as medical implants and aerospace components.

Sustainability and Material Efficiency: As sustainability gains importance, Metal 3D Printing aligns with eco-friendly manufacturing practices. The technology minimizes material wastage, optimizing resource utilization. This is particularly relevant in industries aiming to reduce their environmental footprint.

Challenges and Competition: Challenges persist, including high initial costs, limitations in scaling production for mass markets, and the need for skilled operators. The market is also highly competitive, with numerous companies vying to innovate and expand their product portfolios.

Future Outlook: The Metal 3D Printing market is poised for continuous growth. Advances in materials, increased adoption across industries, and a growing ecosystem of service providers contribute to a promising future. The market will play a pivotal role in shaping the manufacturing landscape, driving efficiency, sustainability, and innovation across sectors.

Key Market Drivers

Growing Demand for Complex and Lightweight Components

The global Metal 3D Printing market is being driven by the increasing demand for complex and lightweight components in various industries, including aerospace, automotive, and healthcare. Traditional manufacturing methods often struggle to produce intricate geometries and structures without multiple assembly steps. Metal 3D Printing enables the creation of parts with complex internal features, reducing the need for assembly and improving overall performance.

In aerospace, for example, the ability to design lightweight and aerodynamic components is crucial for fuel efficiency. Metal 3D Printing allows for the production of aircraft parts that are not only lighter but also stronger and more reliable. This demand for lightweight, high-performance components is a significant driver for the adoption of Metal 3D Printing technology.

Advancements in Metal Powder Development

The quality and availability of metal powders play a critical role in Metal 3D Printing. Recent advancements in metal powder development have expanded the range of materials that can be used in 3D printing processes. Traditionally, materials like titanium, aluminum, and stainless steel dominated the market, but today, there is a broader selection of alloys and metals available.

Innovations in metal powder production techniques have led to improved powder consistency and quality, making Metal 3D Printing more reliable and predictable. This, in turn, has opened up new applications and industries for metal additive manufacturing.

Industry 4.0 and Digital Transformation

The global manufacturing landscape is undergoing a significant transformation through Industry 4.0 and digitalization. Metal 3D Printing is a key enabler of this transformation, as it aligns perfectly with the principles of smart manufacturing, automation, and digitalization.

Manufacturers are increasingly adopting digital twin technologies, which involve creating digital replicas of physical products and processes. Metal 3D Printing plays a vital role in the creation of these digital twins, allowing for rapid prototyping, product customization, and the efficient optimization of designs. As industries embrace digital transformation, the demand for Metal 3D Printing as a core technology continues to rise.


Growing Healthcare Applications

The healthcare sector represents a significant driver for the global Metal 3D Printing market. The ability to produce patient-specific implants and medical devices has revolutionized healthcare practices. Metal 3D Printing is widely used in the production of orthopedic implants, dental prosthetics, and customized surgical instruments.

The aging global population, coupled with a rising demand for personalized healthcare solutions, is fueling the adoption of Metal 3D Printing in the medical field. It allows for the creation of implants that precisely match a patient's anatomy, resulting in better outcomes and reduced recovery times. This growing healthcare market presents a lucrative opportunity for Metal 3D Printing manufacturers.

Sustainability and Reduced Material Waste

Sustainability is a driving force in many industries today, and Metal 3D Printing aligns well with this trend. Traditional manufacturing processes often generate significant material waste, whereas 3D printing can significantly reduce material usage. Metal 3D Printing is an additive manufacturing process, meaning it adds material layer by layer, only using what is necessary to build the desired part.

Reduced material waste not only contributes to sustainability efforts but also leads to cost savings for manufacturers. As environmental concerns continue to grow and regulations on material waste become stricter, Metal 3D Printing's sustainability advantages become more compelling.

Key Market Challenges

High Material and Equipment Costs

One of the primary challenges facing the global Metal 3D Printing market is the high cost associated with both materials and equipment. Metal powders used in 3D printing are often expensive, and the cost can vary significantly depending on the type of metal being used. For example, titanium and nickel-based alloys are costly materials. Additionally, the specialized equipment required for Metal 3D Printing, such as selective laser melting (SLM) or electron beam melting (EBM) machines, can come with a hefty price tag. These high costs can be a barrier to entry for smaller manufacturers and limit the adoption of Metal 3D Printing in various industries.

To address this challenge, manufacturers and researchers are working on cost-effective alternatives, including the development of more affordable metal powders and the design of lower-cost 3D printers. However, achieving cost parity with traditional manufacturing methods remains a significant hurdle.

Limited Material Options and Quality Assurance

While Metal 3D Printing offers the advantage of creating complex geometries, there are limitations when it comes to material options and quality assurance. Not all metals are readily available in powder form suitable for 3D printing. This limits the range of alloys and materials that can be used for specific applications. Moreover, ensuring the quality and consistency of printed metal parts can be challenging. Variations in material properties and printing parameters can lead to defects and inconsistencies in parts, affecting their performance and reliability.

Quality control and assurance are paramount in industries such as aerospace and healthcare, where safety and precision are critical. Addressing this challenge involves developing stricter quality standards, improving in-situ monitoring and inspection techniques, and enhancing post-processing methods to achieve the desired material properties consistently.

Post-Processing and Surface Finish

Post-processing remains a significant challenge in Metal 3D Printing. While 3D printing can create intricate geometries, the resulting parts often require extensive post-processing to achieve the desired surface finish, dimensional accuracy, and mechanical properties. This can involve heat treatment, machining, surface coating, and other techniques, which add time and cost to the production process.

Efforts are underway to develop more efficient and automated post-processing solutions that reduce the need for manual labor and shorten lead times. Innovations in post-processing technologies will be crucial to making Metal 3D Printing more competitive with traditional manufacturing methods.

Regulatory and Certification Hurdles

In industries like aerospace, healthcare, and automotive, products are subject to strict regulatory and certification requirements to ensure safety and reliability. Metal 3D Printing faces challenges in meeting these standards, especially when it comes to validating the quality and performance of printed parts. Obtaining the necessary certifications for 3D-printed components can be a lengthy and complex process.

To overcome this challenge, industry stakeholders, regulatory bodies, and certification organizations must work collaboratively to establish clear guidelines and standards for Metal 3D Printing. This will provide a more predictable and streamlined path to certification, encouraging broader adoption in safety-critical applications.

Intellectual Property and Security Concerns

With the rise of Metal 3D Printing, intellectual property (IP) and security concerns have become increasingly relevant. The digital nature of 3D printing files makes them susceptible to unauthorized copying and distribution. This raises concerns about the protection of proprietary designs and the potential for counterfeit parts to enter the market.

Addressing these challenges requires the development of robust digital rights management (DRM) solutions, secure supply chain practices, and legal frameworks to protect IP in the context of 3D printing. As the industry matures, stakeholders must collaborate to establish standards and best practices for IP protection.

Key Market Trends

Expanding Applications and Materials Diversity

The global Metal 3D Printing market is experiencing a significant trend in expanding applications and materials diversity. Traditionally dominated by aerospace and medical sectors, Metal 3D Printing is now finding utility in various industries. This diversification of applications includes automotive, energy, jewelry, and even consumer products. As a result, manufacturers are increasingly developing new metal alloys suitable for 3D printing, enabling the creation of complex, high-performance components. The ability to print with metals like titanium, nickel alloys, and aluminum is driving innovation across industries, unlocking novel designs and improved product performance.

Advancements in Process Technologies

Another notable trend is the continuous advancement in Metal 3D Printing process technologies. Traditional techniques like powder bed fusion (PBF) and directed energy deposition (DED) have seen improvements in speed, precision, and affordability. PBF processes, including selective laser melting (SLM) and electron beam melting (EBM), are becoming more accessible to a broader range of manufacturers. Additionally, newer technologies, such as binder jetting, are gaining traction due to their ability to print at high speeds while maintaining accuracy. These advancements are driving the adoption of Metal 3D Printing across industries by making it more cost-effective and scalable.

Enhanced Post-Processing and Quality Control

As Metal 3D Printing becomes more mainstream, there's a growing focus on post-processing and quality control. Manufacturers are investing in solutions to improve the surface finish, mechanical properties, and overall quality of printed parts. Innovations in post-processing techniques, such as heat treatment, machining, and surface coatings, are vital for achieving the required surface finish and part integrity. Additionally, the development of in-situ monitoring and inspection technologies is helping ensure that printed metal parts meet stringent quality standards. These advancements address concerns about the reliability and consistency of Metal 3D Printing and encourage its adoption in critical applications.

Sustainability and Circular Economy

Sustainability is a prominent trend in the global Metal 3D Printing market. Metal Additive Manufacturing allows for the creation of parts with minimal waste, reducing material consumption compared to traditional manufacturing methods. This aligns with the broader push for a circular economy, where materials are reused and recycled to minimize environmental impact. Metal 3D Printing's potential for on-demand production and localized manufacturing also contributes to sustainability efforts by reducing transportation emissions associated with global supply chains. As sustainability becomes a more significant concern for businesses and consumers, Metal 3D Printing's eco-friendly attributes are likely to drive its adoption further.

Industry 4.0 Integration

Integration with Industry 4.0 technologies is a transformative trend in the Metal 3D Printing market. The combination of Metal 3D Printing with IoT (Internet of Things) devices, artificial intelligence (AI), and data analytics allows for smart, data-driven manufacturing processes. This integration facilitates real-time monitoring of 3D printers, predictive maintenance, and the ability to optimize print parameters based on data analysis. It also enables seamless connectivity with other digital tools, such as computer-aided design (CAD) and product lifecycle management (PLM) systems, streamlining the entire product development process. Industry 4.0 integration enhances efficiency, quality control, and customization capabilities, positioning Metal 3D Printing as a key enabler of the smart factory of the future.

Segmental Insights

Product Insights

Titanium segment dominates in the global Metal 3D Printing market in 2022. Titanium is renowned for its exceptional material properties, making it highly desirable for a range of applications. It boasts a remarkable strength-to-weight ratio, corrosion resistance, and biocompatibility, making it suitable for aerospace, medical, and automotive industries. These properties have fueled its adoption in Metal 3D Printing.

The aerospace and defense sectors have been early adopters of Metal 3D Printing technology, and titanium's dominance aligns with their stringent requirements. The industry relies on lightweight yet durable components for aircraft and spacecraft, and titanium's unique properties make it an ideal choice. Companies like Boeing and Airbus have employed titanium Metal 3D Printing to create complex structural components, leading to significant weight reduction and fuel savings.

In the healthcare sector, titanium's biocompatibility and corrosion resistance have led to its extensive use in the production of medical implants and devices. From custom implants tailored to a patient's anatomy to dental prosthetics and surgical instruments, Metal 3D Printing with titanium has revolutionized healthcare by enabling the creation of patient-specific solutions.

Form Insights

Powder segment dominates in the global Metal 3D Printing market in 2022. Metal powder is renowned for its versatility, as it encompasses a wide range of materials, including but not limited to titanium, stainless steel, aluminum, and cobalt-chrome. This diversity enables manufacturers to choose materials that align precisely with their specific requirements and end-use applications.

Metal 3D Printing using powder feedstock has found widespread adoption across numerous industries. The aerospace sector employs it to create complex, lightweight components, while the healthcare industry leverages it for producing customized implants and medical devices. The automotive sector also utilizes metal powder for lightweighting and improving vehicle performance.

The powder bed fusion (PBF) technique is one of the most prevalent Metal 3D Printing methods, with several variants such as selective laser melting (SLM) and electron beam melting (EBM). In these processes, a bed of metal powder is selectively melted by a laser or electron beam to build up complex 3D structures layer by layer. PBF offers a high degree of precision and is known for producing parts with excellent mechanical properties.


Download Free Sample Report

Regional Insights

North America dominates the Global Metal 3D Printing Market in 2022. One of the primary reasons for North America's leadership in Metal 3D Printing is its consistent focus on technological advancements and innovation. The region boasts a robust ecosystem of research institutions, universities, and technology companies that continually push the boundaries of additive manufacturing. These organizations invest heavily in R&D, resulting in the development of cutting-edge Metal 3D Printing technologies and materials.

North America is home to some of the world's largest aerospace and defense companies, and this sector has been an early adopter of Metal 3D Printing technology. The aerospace industry requires lightweight yet durable components, which Metal 3D Printing can deliver. Companies like Boeing and Lockheed Martin have embraced Metal 3D Printing for prototyping, production, and repairs, driving the technology's growth in the region.

The healthcare industry in North America has rapidly adopted Metal 3D Printing for various applications, including the production of patient-specific implants, medical devices, and dental prosthetics. The demand for personalized healthcare solutions and the region's strong medical research and development ecosystem have contributed to Metal 3D Printing's expansion in this sector.

North America benefits from a regulatory environment that encourages innovation while ensuring safety and quality standards. Regulatory agencies, such as the FDA in the United States, have developed clear guidelines for additive manufacturing in healthcare, giving companies the confidence to invest in Metal 3D Printing for medical applications.

Recent Developments

  • In November 2019, Renishaw plc collaborated with Sandvik Additive Manufacturing to qualify new additive manufacturing (AM) materials for production applications. These materials include a range of metal powders and new alloy compositions that can be optimized for the laser powder bed fusion (LPBF) process and superior material properties. With this collaboration, Renishaw plc developed new metal materials for 3D printing.
  • In October 2019, GE Additive entered into a five-year cooperative research and development agreement (CRADA) with the US Department of Energy’s Oak Ridge National Laboratory (ORNL). The agreement was focused on the processes, materials, and software to increase customer adaptability towards additive manufacturing from conventional manufacturing.

Key Market Players

  • 3D Systems, Inc.
  • Arcam AB
  • GE Additive Manufacturing
  • Hewlett-Packard
  • Markforged, Inc.
  • Renishaw plc
  • SLM Solutions Group AG
  • Stratasys Ltd.
  • TRUMPF GmbH + Co. KG
  • Velo3D, Inc.

By Product

By Form

By Application

By Region

  • Titanium
  • Nickel
  • Filament
  • Powder
  • Aerospace & Defense
  • Medical & Dental
  • Others
  • North America
  • Europe
  • South America
  • Middle East & Africa
  • Asia Pacific


Report Scope:

In this report, the Global Metal 3D Printing Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

·         Metal 3D Printing Market, By Product:

o   Titanium

o   Nickel

·         Metal 3D Printing Market, By Form:

o   Filament

o   Powder

·         Metal 3D Printing Market, By Application:

o   Aerospace & Defense

o   Medical & Dental

o   Others

·         Metal 3D Printing Market, By Region:

o   North America

§  United States

§  Canada

§  Mexico

o   Europe

§  Germany

§  France

§  United Kingdom

§  Italy

§  Spain

o   South America

§  Brazil

§  Argentina

§  Colombia

o   Asia-Pacific

§  China

§  India

§  Japan

§  South Korea

§  Australia

o   Middle East & Africa

§  Saudi Arabia

§  UAE

§  South Africa

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Metal 3D Printing Market.

Available Customizations:

Global Metal 3D Printing Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Global Metal 3D Printing Market is an upcoming report to be released soon. If you wish an early delivery of this report or want to confirm the date of release, please contact us at [email protected]

Table of content

Table of content

1.    Product Overview

1.1.    Market Definition

1.2.    Scope of the Market

1.2.1.    Markets Covered

1.2.2.    Years Considered for Study

1.2.3.    Key Market Segmentations

2.    Research Methodology

2.1.    Baseline Methodology

2.2.    Key Industry Partners

2.3.    Major Association and Secondary Sources

2.4.    Forecasting Methodology

2.5.    Data Triangulation & Validation

2.6.    Assumptions and Limitations

3.    Executive Summary

4.    Impact of COVID-19 on Global Metal 3D Printing Market

5.    Voice of Customer

6.    Global Metal 3D Printing Market Overview

7.    Global Metal 3D Printing Market Outlook

7.1.    Market Size & Forecast

7.1.1.    By Value

7.2.    Market Share & Forecast

7.2.1.  By Product (Titanium, Nickel)

7.2.2.  By Form (Filament, Powder)

7.2.3.  By Application (Aerospace & Defense, Medical & Dental, Others)

7.2.4.  By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)

7.3.    By Company (2022)

7.4.    Market Map

8.    North America Metal 3D Printing Market Outlook

8.1.    Market Size & Forecast

8.1.1.    By Value

8.2.    Market Share & Forecast

8.2.1.    By Product

8.2.2.    By Form

8.2.3.    By Application

8.2.4.    By Country

8.2.4.1.        United States Metal 3D Printing Market Outlook

8.2.4.1.1.        Market Size & Forecast

8.2.4.1.1.1.    By Value

8.2.4.1.2.        Market Share & Forecast

8.2.4.1.2.1.               By Product

8.2.4.1.2.2.               By Form

8.2.4.1.2.3.               By Application

8.2.4.2.        Canada Metal 3D Printing Market Outlook

8.2.4.2.1.        Market Size & Forecast

8.2.4.2.1.1.    By Value

8.2.4.2.2.        Market Share & Forecast

8.2.4.2.2.1.               By Product

8.2.4.2.2.2.               By Form

8.2.4.2.2.3.               By Application

8.2.4.3.        Mexico Metal 3D Printing Market Outlook

8.2.4.3.1.        Market Size & Forecast

8.2.4.3.1.1.    By Value

8.2.4.3.2.        Market Share & Forecast

8.2.4.3.2.1.               By Product

8.2.4.3.2.2.               By Form

8.2.4.3.2.3.               By Application

9.    Europe Metal 3D Printing Market Outlook

9.1.    Market Size & Forecast

9.1.1.  By Value

9.2.    Market Share & Forecast

9.2.1.    By Product

9.2.2.    By Form

9.2.3.    By Application

9.2.4.    By Country

9.2.4.1.        Germany Metal 3D Printing Market Outlook

9.2.4.1.1.        Market Size & Forecast

9.2.4.1.1.1.    By Value

9.2.4.1.2.        Market Share & Forecast

9.2.4.1.2.1.               By Product

9.2.4.1.2.2.               By Form

9.2.4.1.2.3.               By Application

9.2.4.2.        France Metal 3D Printing Market Outlook

9.2.4.2.1.        Market Size & Forecast

9.2.4.2.1.1.    By Value

9.2.4.2.2.        Market Share & Forecast

9.2.4.2.2.1.               By Product

9.2.4.2.2.2.               By Form

9.2.4.2.2.3.               By Application

9.2.4.3.        United Kingdom Metal 3D Printing Market Outlook

9.2.4.3.1.        Market Size & Forecast

9.2.4.3.1.1.    By Value

9.2.4.3.2.        Market Share & Forecast

9.2.4.3.2.1.               By Product

9.2.4.3.2.2.               By Form

9.2.4.3.2.3.               By Application

9.2.4.4.        Italy Metal 3D Printing Market Outlook

9.2.4.4.1.        Market Size & Forecast

9.2.4.4.1.1.    By Value

9.2.4.4.2.        Market Share & Forecast

9.2.4.4.2.1.               By Product

9.2.4.4.2.2.               By Form

9.2.4.4.2.3.               By Application

9.2.4.5.        Spain Metal 3D Printing Market Outlook

9.2.4.5.1.        Market Size & Forecast

9.2.4.5.1.1.    By Value

9.2.4.5.2.        Market Share & Forecast

9.2.4.5.2.1.               By Product

9.2.4.5.2.2.               By Form

9.2.4.5.2.3.               By Application

10. South America Metal 3D Printing Market Outlook

10.1. Market Size & Forecast

10.1.1.    By Value

10.2. Market Share & Forecast

10.2.1. By Product

10.2.2. By Form

10.2.3. By Application

10.2.4. By Country

10.2.4.1.     Brazil Metal 3D Printing Market Outlook

10.2.4.1.1.   Market Size & Forecast

10.2.4.1.1.1.             By Value

10.2.4.1.2.   Market Share & Forecast

10.2.4.1.2.1.            By Product

10.2.4.1.2.2.            By Form

10.2.4.1.2.3.            By Application

10.2.4.2.     Colombia Metal 3D Printing Market Outlook

10.2.4.2.1.   Market Size & Forecast

10.2.4.2.1.1.             By Value

10.2.4.2.2.   Market Share & Forecast

10.2.4.2.2.1.            By Product

10.2.4.2.2.2.            By Form

10.2.4.2.2.3.            By Application

10.2.4.3.     Argentina Metal 3D Printing Market Outlook

10.2.4.3.1.   Market Size & Forecast

10.2.4.3.1.1.             By Value

10.2.4.3.2.   Market Share & Forecast

10.2.4.3.2.1.            By Product

10.2.4.3.2.2.            By Form

10.2.4.3.2.3.            By Application

11. Middle East & Africa Metal 3D Printing Market Outlook

11.1. Market Size & Forecast

11.1.1.    By Value

11.2. Market Share & Forecast

11.2.1. By Product

11.2.2. By Form

11.2.3. By Application

11.2.4. By Country

11.2.4.1.     Saudi Arabia Metal 3D Printing Market Outlook

11.2.4.1.1.   Market Size & Forecast

11.2.4.1.1.1.             By Value

11.2.4.1.2.   Market Share & Forecast

11.2.4.1.2.1.            By Product

11.2.4.1.2.2.            By Form

11.2.4.1.2.3.            By Application

11.2.4.2.     UAE Metal 3D Printing Market Outlook

11.2.4.2.1.   Market Size & Forecast

11.2.4.2.1.1.             By Value

11.2.4.2.2.   Market Share & Forecast

11.2.4.2.2.1.            By Product

11.2.4.2.2.2.            By Form

11.2.4.2.2.3.            By Application

11.2.4.3.     South Africa Metal 3D Printing Market Outlook

11.2.4.3.1.   Market Size & Forecast

11.2.4.3.1.1.             By Value

11.2.4.3.2.   Market Share & Forecast

11.2.4.3.2.1.            By Product

11.2.4.3.2.2.            By Form

11.2.4.3.2.3.            By Application

12. Asia Pacific Metal 3D Printing Market Outlook

12.1. Market Size & Forecast

12.1.1.    By Value

12.2. Market Size & Forecast

12.2.1. By Product

12.2.2. By Form

12.2.3. By Application

12.2.4. By Country

12.2.4.1.     China Metal 3D Printing Market Outlook

12.2.4.1.1.   Market Size & Forecast

12.2.4.1.1.1.             By Value

12.2.4.1.2.   Market Share & Forecast

12.2.4.1.2.1.            By Product

12.2.4.1.2.2.            By Form

12.2.4.1.2.3.            By Application

12.2.4.2.     India Metal 3D Printing Market Outlook

12.2.4.2.1.   Market Size & Forecast

12.2.4.2.1.1.             By Value

12.2.4.2.2.   Market Share & Forecast

12.2.4.2.2.1.            By Product

12.2.4.2.2.2.            By Form

12.2.4.2.2.3.            By Application

12.2.4.3.     Japan Metal 3D Printing Market Outlook

12.2.4.3.1.   Market Size & Forecast

12.2.4.3.1.1.             By Value

12.2.4.3.2.   Market Share & Forecast

12.2.4.3.2.1.            By Product

12.2.4.3.2.2.            By Form

12.2.4.3.2.3.            By Application

12.2.4.4.     South Korea Metal 3D Printing Market Outlook

12.2.4.4.1.   Market Size & Forecast

12.2.4.4.1.1.  By Value

12.2.4.4.2.   Market Share & Forecast

12.2.4.4.2.1.            By Product

12.2.4.4.2.2.            By Form

12.2.4.4.2.3.            By Application

12.2.4.5.     Australia Metal 3D Printing Market Outlook

12.2.4.5.1.   Market Size & Forecast

12.2.4.5.1.1.             By Value

12.2.4.5.2.   Market Share & Forecast

12.2.4.5.2.1.            By Product

12.2.4.5.2.2.            By Form

12.2.4.5.2.3.            By Application

13. Market Dynamics

13.1.   Drivers

13.2.   Challenges

14. Market Trends and Developments

15. Company Profiles

15.1.   3D Systems, Inc.

15.1.1.        Business Overview

15.1.2.        Key Revenue and Financials  

15.1.3.        Recent Developments

15.1.4.        Key Personnel

15.1.5.        Key Product/Services Offered

15.2.   Arcam AB

15.2.1.        Business Overview

15.2.2.        Key Revenue and Financials  

15.2.3.        Recent Developments

15.2.4.        Key Personnel

15.2.5.        Key Product/Services Offered

15.3.   GE Additive Manufacturing

15.3.1.        Business Overview

15.3.2.        Key Revenue and Financials  

15.3.3.        Recent Developments

15.3.4.        Key Personnel

15.3.5.        Key Product/Services Offered

15.4.   Hewlett-Packard

15.4.1.        Business Overview

15.4.2.        Key Revenue and Financials  

15.4.3.        Recent Developments

15.4.4.        Key Personnel

15.4.5.        Key Product/Services Offered

15.5.   Markforged, Inc.

15.5.1.        Business Overview

15.5.2.        Key Revenue and Financials  

15.5.3.        Recent Developments

15.5.4.        Key Personnel

15.5.5.        Key Product/Services Offered

15.6.   Renishaw plc

15.6.1.        Business Overview

15.6.2.        Key Revenue and Financials  

15.6.3.        Recent Developments

15.6.4.        Key Personnel

15.6.5.        Key Product/Services Offered

15.7.   SLM Solutions Group AG

15.7.1.        Business Overview

15.7.2.        Key Revenue and Financials  

15.7.3.        Recent Developments

15.7.4.        Key Personnel

15.7.5.        Key Product/Services Offered

15.8.   Stratasys Ltd.

15.8.1.        Business Overview

15.8.2.        Key Revenue and Financials  

15.8.3.        Recent Developments

15.8.4.        Key Personnel

15.8.5.        Key Product/Services Offered

15.9.   TRUMPF GmbH + Co. KG

15.9.1.        Business Overview

15.9.2.        Key Revenue and Financials  

15.9.3.        Recent Developments

15.9.4.        Key Personnel

15.9.5.        Key Product/Services Offered

15.10.Velo3D, Inc.

15.10.1.     Business Overview

15.10.2.     Key Revenue and Financials  

15.10.3.     Recent Developments

15.10.4.     Key Personnel

15.10.5.     Key Product/Services Offered

16. Strategic Recommendations

17. About Us & Disclaimer

Figures and Tables

Frequently asked questions

Frequently asked questions

The market size of the global Metal 3D Printing market was estimated to be USD 6.03 Billion in 2022.

Titanium is the dominant segment in the global Metal 3D Printing market in 2022 by product.

The challenges in the global Metal 3D Printing market include high material and equipment costs, limited material options and quality assurance, post-processing and surface finish, regulatory and certification hurdles, etc.

The major drivers for the global Metal 3D Printing market include growing demand for complex and lightweight components, advancements in metal powder development, industry 4.0 and digital transformation, growing healthcare applications, etc.

Related Reports