Main Content start here
Main Layout
Report Description

Report Description

Forecast Period

2024-2028

Market Size (2022)

USD 2.08 billion

CAGR (2023-2028)

15.19%

Fastest Growing Segment

Industrial

Largest Market

Asia-Pacific


Market Overview

The Global HVDC Capacitor Market, valued at USD 2.08 billion in 2022, is poised for strong growth in the forecast period, with a projected CAGR of 15.19% through 2028.

This market segment encompasses the manufacturing, distribution, and utilization of capacitors specially designed for High Voltage Direct Current (HVDC) systems. HVDC systems represent advanced electrical transmission technologies that enable efficient and long-distance electricity transfer. They find application in various areas, including the integration of renewable energy, cross-border power exchange, and grid modernization. HVDC capacitors play a critical role in these systems by maintaining voltage levels, filtering electrical signals, and enhancing overall HVDC transmission performance and reliability. These specialized capacitors are engineered to withstand the unique demands of high voltage, direct current, and extended operational lifespans.

The global HVDC capacitor market caters to the increasing demand driven by the widespread adoption of HVDC technology worldwide. This adoption is fueled by factors such as the rapid growth of renewable energy sources and initiatives to interconnect electrical grids.

Key Market Drivers

Expansion of Renewable Energy Generation:

The primary driver behind the growth of the global HVDC capacitor market is the expansion of renewable energy generation. As the world shifts towards sustainable energy sources, there is a rising demand for HVDC technology, leading to an increased need for HVDC capacitors. Renewable energy, such as wind and solar power, often generates electricity in remote locations. Transmitting this power over long distances to urban areas is made efficient through HVDC systems, with capacitors playing a crucial role in ensuring system stability and efficiency. With governments worldwide investing in renewable energy infrastructure, the HVDC capacitor market is well-positioned for significant growth.

Rapid Urbanization and Grid Expansion

The relentless pace of urbanization and the expansion of electricity grids worldwide are compelling the need for more efficient power transmission. HVDC technology stands out as the ideal solution for transferring substantial electricity over vast distances, a crucial requirement for connecting burgeoning urban areas to remote power generation facilities. Capacitors are indispensable in HVDC systems as they help maintain voltage levels and enhance grid stability, making them vital components in addressing escalating energy demands in urban centers.

Technological Advancements in HVDC Systems

Continual advancements in HVDC technology, particularly the development of voltage source converters (VSC-HVDC), are driving the widespread adoption of HVDC systems. These modern systems require capacitors with enhanced performance characteristics, such as high energy density and minimal losses. Manufacturers are investing heavily in research and development to meet these evolving demands, opening up new opportunities in the HVDC capacitor market.

Grid Interconnection and Cross-Border Power Trading

The increasing trend of international grid interconnections and cross-border power trading is fostering the global demand for HVDC systems. HVDC technology is preferred for connecting power grids across borders due to its efficiency and ability to transmit power over extended distances. Capacitors play an indispensable role in these systems, ensuring smooth and reliable power exchange between nations. As countries increasingly prioritize grid interconnection and cross-border energy exchange, the HVDC capacitor market is experiencing significant growth.

Grid Resilience and Reliability

Grid resilience and reliability are paramount concerns for utilities and governments, especially in the face of escalating climate-related challenges. Extreme weather events like hurricanes, wildfires, and storms are becoming more frequent, posing substantial threats to power distribution. Fortified with robust capacitors, HVDC systems offer heightened grid resilience by minimizing transmission losses and enabling rapid reconfiguration during disruptions. As grid operators intensify their focus on resilience, the demand for HVDC capacitors is set to rise.

Electrification of Transportation

The ongoing electrification of transportation, including electric vehicles (EVs) and high-speed trains, is gaining momentum worldwide. This trend is fueling the demand for high-capacity charging infrastructure and efficient power transmission. HVDC systems, supported by capacitors, are pivotal in delivering the required power to charging stations and transportation networks. As the electrification of transportation accelerates to combat environmental concerns, the HVDC capacitor market is poised to benefit significantly from the associated infrastructure investments.

In summary, the global HVDC capacitor market is experiencing robust growth driven by a convergence of factors, including the expansion of renewable energy generation, urbanization, technological advancements, grid interconnections, grid resilience imperatives, and the electrification of transportation. These drivers collectively create a promising outlook for the HVDC capacitor industry, with sustained growth anticipated in the coming years.

Government Policies are Likely to Propel the Market

Renewable Energy Mandates and Incentives

In recent years, many governments worldwide have implemented policies to promote renewable energy sources, such as wind and solar power. These policies often include renewable energy mandates, which require a certain percentage of electricity generation to come from renewables, and various incentives like tax credits, subsidies, and feed-in tariffs to encourage investment in renewable energy projects. These policies have a direct and positive effect on the HVDC capacitor market. As renewable energy sources are typically located in remote areas, HVDC technology is used to transmit the generated power efficiently to urban centers. Capacitors are integral components of HVDC systems, ensuring stable and efficient power transmission. With governments actively supporting the expansion of renewable energy capacity, the demand for HVDC capacitors is expected to grow significantly.

Grid Modernization and Reliability Standards

Many governments are prioritizing grid modernization and setting stringent reliability standards to ensure a stable and resilient electricity supply. These policies focus on enhancing the efficiency, security, and reliability of power grids, especially in the face of extreme weather events and other disruptions. HVDC systems, with their capacity for long-distance power transmission and grid-stabilizing features, align perfectly with these objectives. Capacitors play a vital role in maintaining grid stability. Governments are thus encouraging the deployment of HVDC technology as part of their grid modernization efforts, indirectly boosting the HVDC capacitor market.

Cross-Border Electricity Trade Agreements

Governments are increasingly entering cross-border electricity trade agreements in an era of interconnected global energy markets. These agreements facilitate the exchange of electricity between neighboring countries to balance supply and demand more efficiently. HVDC systems are often the preferred choice for cross-border electricity transmission due to their ability to transmit power over long distances with minimal losses. Capacitors are essential components in these systems, ensuring the smooth and reliable exchange of electricity between nations. Government policies that promote cross-border electricity trade directly stimulate the demand for HVDC capacitors.

Research and Development Funding

Many governments allocate substantial funds for research and development (R&D) in the field of energy technology. These funds support the development of new and improved HVDC systems and components, including capacitors. R&D policies are vital drivers of innovation in the HVDC capacitor market, leading to the creation of capacitors with enhanced performance characteristics. By providing grants, subsidies, and partnerships with research institutions and private companies, governments encourage the development of capacitors that are more efficient, have higher energy density, and can operate in extreme conditions. Such investments drive technological advancements and foster the competitiveness of the global HVDC capacitor industry.

Environmental Regulations

Environmental regulations aimed at reducing greenhouse gas emissions and promoting energy efficiency are impacting the energy sector significantly. Governments are setting strict emission targets and introducing policies to phase out coal-fired power plants and promote cleaner energy sources. HVDC technology, known for its efficiency in transmitting electricity over long distances with minimal losses, aligns with these environmental goals. Capacitors in HVDC systems help reduce energy losses during transmission. As governments push for cleaner energy solutions, HVDC technology, and consequently, HVDC capacitors, become more prominent in their energy strategies.

Trade and Tariff Policies

Trade and tariff policies also play a role in the global HVDC capacitor market. Governments may impose tariffs or trade restrictions on capacitor imports to protect domestic manufacturing and ensure the security of critical infrastructure components. Conversely, policies that promote free trade and ease import restrictions can facilitate the flow of HVDC capacitors across borders, benefiting both manufacturers and end-users. These trade policies can have a significant impact on the availability and affordability of HVDC capacitors in the global market.

In conclusion, government policies have a substantial influence on the global HVDC capacitor market. Policies that support renewable energy, grid modernization, cross-border electricity trade, R&D funding, environmental sustainability, and trade can either directly or indirectly shape the demand and growth prospects of the HVDC capacitor industry. As governments continue to refine their energy policies, the HVDC capacitor market will respond accordingly, reflecting the evolving landscape of the energy sector.

 

Download Free Sample Report

Key Market Challenges

Technological Advancements and Innovation

The HVDC capacitor market faces a significant challenge related to the rapid pace of technological advancements and the need for continuous innovation. As the energy industry evolves and embraces new technologies, HVDC systems are also subject to constant upgrades and improvements. Capacitors, as essential components of HVDC systems, must keep pace with these developments to remain relevant and competitive. One aspect of this challenge is the demand for higher energy density and improved performance characteristics. With the increasing deployment of HVDC systems for long-distance power transmission, there is a growing need for capacitors that can store more energy in a smaller footprint while minimizing energy losses. Achieving these goals requires ongoing research and development efforts. Moreover, environmental concerns and regulations are driving the demand for more environmentally friendly capacitors. Traditional capacitor technologies, such as those using oil-based dielectrics, are facing scrutiny due to their environmental impact. Governments and industry stakeholders are pushing for the adoption of eco-friendly alternatives, such as capacitors with biodegradable dielectrics or those using dry insulation materials. Developing and commercializing these environmentally friendly solutions pose significant technological challenges. Furthermore, as HVDC systems are integrated with emerging technologies like voltage source converters (VSC-HVDC) and flexible AC transmission systems (FACTS), capacitors must adapt to the specific requirements of these systems. For example, VSC-HVDC systems require capacitors that can operate effectively at high frequencies and voltages, posing technical challenges in terms of capacitor design and performance. Additionally, the HVDC capacitor market faces challenges related to cost-effectiveness. While technological advancements often lead to better-performing capacitors, they can also drive up production costs. Balancing the demand for improved performance with cost-effectiveness is a delicate challenge that manufacturers must address. In summary, the constant evolution of HVDC technology and the need for innovation present a formidable challenge to the global HVDC capacitor market. Meeting the demands for higher energy density, environmental sustainability, compatibility with new HVDC system architectures, and cost-effectiveness necessitates ongoing research and development efforts and investments in manufacturing capabilities.

Supply Chain Disruptions and Raw Material Availability

The global HVDC capacitor market faces a challenge related to supply chain disruptions and the availability of critical raw materials. This challenge has been exacerbated by various factors, including geopolitical tensions, the COVID-19 pandemic, and the increasing demand for advanced technologies. HVDC capacitors require specific materials, including high-quality dielectric materials, conductive materials, and insulating components. The supply chain for these materials can be complex and susceptible to disruptions. For instance, the availability of rare earth materials, which are essential for certain capacitor types, has been subject to geopolitical tensions, leading to price fluctuations and potential shortages. Moreover, the COVID-19 pandemic exposed vulnerabilities in global supply chains. Lockdowns, restrictions on movement, and disruptions in manufacturing and transportation affected the production and distribution of electronic components, including capacitors. The pandemic highlighted the need for diversifying supply sources and ensuring the resilience of supply chains. Another aspect of this challenge is the increasing competition for critical raw materials from other high-tech industries, such as electric vehicles and consumer electronics. The demand for these materials has surged, further intensifying competition and affecting their availability and pricing. Furthermore, regulatory changes related to the sourcing and use of certain materials can impact the HVDC capacitor market. Regulations aimed at environmental protection and ethical sourcing may restrict the use of certain materials or require increased transparency in the supply chain. Addressing these supply chain challenges requires proactive measures by HVDC capacitor manufacturers. This includes diversifying supply sources, investing in inventory management and risk mitigation strategies, and exploring alternative materials that are less vulnerable to supply chain disruptions. Collaborative efforts between governments, industry stakeholders, and material suppliers may also be necessary to ensure a stable and secure supply chain for critical raw materials.

In conclusion, supply chain disruptions and the availability of essential raw materials present a significant challenge to the global HVDC capacitor market. Manufacturers must navigate geopolitical uncertainties, address the impact of the COVID-19 pandemic, and adapt to increasing competition for critical materials to ensure the continued growth and stability of the HVDC capacitor industry.

Segmental Insights

Application Insights

The Energy & Power segment had the largest market share in 2022 & expected to maintain in the forecast period. The energy and power sector has witnessed a substantial shift towards renewable energy sources, such as wind and solar power. These renewable sources often generate electricity in remote areas where transmission over long distances is required. HVDC technology is the preferred choice for efficiently transmitting this power over extended distances. Capacitors are critical components in HVDC systems that ensure the stability and reliability of the energy transmission. As the world increasingly adopts renewables, the demand for HVDC capacitors in this segment has surged. Governments and utilities worldwide are investing in expanding and modernizing their electrical grids to meet the growing energy demands of urbanization. HVDC systems are well-suited for connecting distant power generation facilities to urban centers, enhancing grid efficiency, and reducing transmission losses over long distances. Capacitors play a crucial role in stabilizing voltage levels, which is essential for grid reliability. This grid expansion and modernization drive the demand for HVDC capacitors in the energy and power sector. International power interconnections and cross-border electricity trading have become more prevalent. HVDC systems excel in facilitating the exchange of electricity between neighboring countries due to their efficiency in long-distance transmission. Capacitors ensure the smooth and reliable transfer of power in these cross-border systems. As governments and utilities promote cross-border power exchange to optimize energy resources, the energy and power segment becomes a dominant consumer of HVDC capacitors.The energy and power sector places a premium on grid resilience and stability. HVDC technology, supported by capacitors, enhances grid stability by reducing transmission losses and allowing for rapid reconfiguration during disruptions, such as extreme weather events. With a growing emphasis on grid resilience in the face of climate-related challenges, the energy and power sector increasingly relies on HVDC systems, driving the demand for HVDC capacitors. The electrification of transportation, including electric vehicles (EVs) and high-speed trains, is gaining momentum globally. HVDC technology, in conjunction with capacitors, is essential for delivering the required power to charging infrastructure and transportation networks. As the electrification trend continues to grow, the energy and power sector remains a significant driver of HVDC capacitor demand. Government policies and incentives aimed at promoting clean energy and grid reliability often favor the energy and power sector. These policies include renewable energy mandates, grid modernization initiatives, and incentives for cross-border power exchange. Such government support directly fuels the demand for HVDC systems and, consequently, HVDC capacitors within the energy and power industr.

Type Insights

The Aluminum Electrolytic Capacitor segment had the largest market share in 2022 and is projected to experience rapid growth during the forecast period.  Aluminum electrolytic capacitors are known for their ability to handle high voltage levels, making them suitable for use in HVDC systems, which often operate at elevated voltages. HVDC systems require capacitors that can withstand these high voltage levels without breakdown, and aluminum electrolytic capacitors are designed to meet this requirement effectively. Capacitance is a crucial parameter in HVDC applications. Aluminum electrolytic capacitors offer high capacitance values, allowing them to store significant amounts of electrical energy. This is particularly important in HVDC systems where energy storage and regulation are essential for efficient power transmission. HVDC systems typically have long lifespans and operate in challenging environments. Aluminum electrolytic capacitors are known for their durability and reliability, even in harsh conditions. They can withstand temperature variations and environmental factors commonly encountered in HVDC installations. Manufacturers can customize aluminum electrolytic capacitors to meet specific requirements, including voltage ratings, capacitance values, and form factors. This flexibility allows them to cater to the diverse needs of HVDC projects.Aluminum electrolytic capacitors are generally cost-effective compared to some other specialized HVDC capacitor technologies. This cost efficiency can be especially attractive for HVDC projects looking to manage their budget while maintaining high-quality components. Aluminum electrolytic capacitors have a long history of use in various electrical and electronic applications. This extensive experience has led to the development of reliable and well-established manufacturing processes. HVDC engineers and designers often have confidence in the performance of aluminum electrolytic capacitors, contributing to their continued adoption. Aluminum electrolytic capacitors are compatible with different voltage source converter (VSC) and line-commutated converter (LCC) technologies commonly used in HVDC systems. This compatibility simplifies the integration of these capacitors into HVDC projects.

 

Download Free Sample Report

Regional Insights

Asia Pacific:

Asia Pacific had the largest market for HVDC capacitors in 2022. The growth of the market in this region is driven by the following factors:

Rapid growth of the renewable energy sector: Asia Pacific is home to some of the fastest-growing renewable energy markets in the world, such as China and India. These countries are investing heavily in renewable energy projects, such as solar and wind power, which require HVDC transmission systems.

Increasing focus on improving grid infrastructure: Many countries in Asia Pacific are also investing in improving their grid infrastructure. This is being done to meet the growing demand for electricity and to improve the reliability of the grid. HVDC capacitors are used to improve the stability and efficiency of the grid.

Growing demand for uninterrupted power: The growing demand for uninterrupted power in data centers and electric vehicles is also expected to drive the growth of the market in this region. HVDC capacitors are used to provide uninterrupted power to these critical applications.

North America:

North America had the second-largest market for HVDC capacitors in 2022. The growth of the market in this region is driven by the following factors:

Increasing focus on improving grid infrastructure: The United States and Canada are investing heavily in improving their grid infrastructure. This is being done to meet the growing demand for electricity and to improve the reliability of the grid. HVDC capacitors are used to improve the stability and efficiency of the grid.

Growing demand for uninterrupted power: The growing demand for uninterrupted power in data centers and electric vehicles is also expected to drive the growth of the market in this region. HVDC capacitors are used to provide uninterrupted power to these critical applications.

Technological advancements: The technological advancements in HVDC transmission systems are also expected to drive the growth of the market in this region. New technologies, such as modular HVDC systems, are making HVDC transmission more cost-effective and efficient, and the demand for these systems is expected to grow in the coming years.

Recent Developments

  • In April 2023, ABB announced that it had received an order worth USD 218.36 million from TenneT for HVDC converter stations in the Netherlands. The order includes the supply of HVDC capacitors, as well as other equipment.
  • In March 2023, Eaton announced that it had received an order worth USD 100 million from Hydro-Québec for HVDC capacitors. The order is for the supply of capacitors for a new HVDC transmission system in Canada.
  • In February 2023, Vishay Intertechnology announced that it had received an order worth USD 50 million from a major Chinese power utility for HVDC capacitors. The order is for the supply of capacitors for a new HVDC transmission system in China.
  • In January 2023, Nissin Electric announced that it had received an order worth USD 68 10 million from a major Japanese power utility for HVDC capacitors. The order is for the supply of capacitors for a new HVDC transmission system in Japan.

These are just a few of the recent investments in the global HVDC capacitor market. The market is expected to continue to grow in the coming years, driven by the increasing demand for renewable energy and the need to improve grid infrastructure.

Key Market Players

  • Hitachi, Ltd
  • General Electric Company
  • TDK Corporation
  • Eaton Corporation plc
  • KYOCERA Corporation
  • YAGEO Corporation
  • Vishay Intertechnology, Inc.
  • ABB Ltd
  • Nissin electric (Wuxi) Co., Ltd.
  • Littelfuse, Inc.

By Type

By Technology

By Installation Type

By Application

By Region

  • Plastic Film Capacitor
  • Aluminum Electrolytic Capacitor
  • Ceramic Capacitor
  • Tantalum Wet Capacitor
  • Reconstituted Mica Paper Capacitor
  • Glass Capacitor
  • Others
  • Line Commutated Convertors
  • Voltage-sourced Convertors
  • Open Rack Capacitor Banks
  • Enclosed Rack Capacitor Banks
  • Pole Mounted Capacitor Banks
  • Commercial
  • Industrial
  • Energy & Power
  • Defense
  • Others
  • North America
  • Europe
  • Asia Pacific
  • South America
  • Middle East & Africa

 

Report Scope:

In this report, the Global HVDC Capacitor Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

  • HVDC Capacitor Market, By Type:

o   Plastic Film Capacitor

o   Aluminum Electrolytic Capacitor

o   Ceramic Capacitor

o   Tantalum Wet Capacitor

o   Reconstituted Mica Paper Capacitor

o   Glass Capacitor

o   Others   

  • HVDC Capacitor Market, By Technology:

o   Line Commutated Convertors

o   Voltage-sourced Convertors  

  • HVDC Capacitor Market, By Installation Type:

o   Open Rack Capacitor Banks

o   Enclosed Rack Capacitor Banks

o   Pole Mounted Capacitor Banks

  • HVDC Capacitor Market, By Application:

o   Commercial

o   Industrial

o   Energy & Power

o   Defense

o   Others

  • HVDC Capacitor Market, By Region:

o   North America

§  United States

§  Canada

§  Mexico

o   Europe

§  France

§  United Kingdom

§  Italy

§  Germany

§  Spain

o   Asia-Pacific

§  China

§  India

§  Japan

§  Australia

§  South Korea

o   South America

§  Brazil

§  Argentina

§  Colombia

o   Middle East & Africa

§  South Africa

§  Saudi Arabia

§  UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global HVDC Capacitor Market.

Available Customizations:

Global HVDC Capacitor market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Global HVDC Capacitor Market is an upcoming report to be released soon. If you wish an early delivery of this report or want to confirm the date of release, please contact us at [email protected]

Table of content

Table of content

1.    Product Overview

2.    Research Methodology

3.    Executive Summary

4.    Voice of Customer

5.    Global HVDC Capacitor Market Outlook

5.1.  Market Size & Forecast

5.1.1.    By Value

5.2.  Market Share & Forecast

5.2.1.    By Type (Plastic Film Capacitor, Aluminum Electrolytic Capacitor, Ceramic Capacitor, Tantalum Wet Capacitor, Reconstituted Mica Paper Capacitor, Glass Capacitor, and Others)

5.2.2.    By Technology (Line Commutated Convertors and Voltage-sourced Convertors)

5.2.3.    By Installation Type (Open Rack Capacitor Banks, Enclosed Rack Capacitor Banks, Pole Mounted Capacitor Banks),

5.2.4.    By Application (Commercial, Industrial, Energy & Power, Defense, and Others)

5.2.5.    By Region

5.3.  By Company (2022)

5.4.  Market Map

6.    North America HVDC Capacitor Market Outlook

6.1.  Market Size & Forecast       

6.1.1.    By Value

6.2.  Market Share & Forecast

6.2.1.    By Type

6.2.2.    By Technology

6.2.3.    By Installation Type

6.2.4.    By Application

6.2.5.    By Country

6.3.  North America: Country Analysis

6.3.1.    United States HVDC Capacitor Market Outlook

6.3.1.1.        Market Size & Forecast

6.3.1.1.1.           By Value

6.3.1.2.        Market Share & Forecast

6.3.1.2.1.           By Type

6.3.1.2.2.           By Technology

6.3.1.2.3.           By Installation Type

6.3.1.2.4.           By Application

6.3.2.    Canada HVDC Capacitor Market Outlook

6.3.2.1.        Market Size & Forecast

6.3.2.1.1.           By Value

6.3.2.2.        Market Share & Forecast

6.3.2.2.1.           By Type

6.3.2.2.2.           By Technology

6.3.2.2.3.           By Installation Type

6.3.2.2.4.           By Application

6.3.3.    Mexico HVDC Capacitor Market Outlook

6.3.3.1.        Market Size & Forecast

6.3.3.1.1.           By Value

6.3.3.2.        Market Share & Forecast

6.3.3.2.1.           By Type

6.3.3.2.2.           By Technology

6.3.3.2.3.           By Installation Type

6.3.3.2.4.           By Application

7.    Europe HVDC Capacitor Market Outlook

7.1.  Market Size & Forecast       

7.1.1.    By Value

7.2.  Market Share & Forecast

7.2.1.    By Type

7.2.2.    By Technology

7.2.3.    By Installation Type

7.2.4.    By Application

7.2.5.    By Country

7.3.  Europe: Country Analysis

7.3.1.    Germany HVDC Capacitor Market Outlook

7.3.1.1.        Market Size & Forecast

7.3.1.1.1.           By Value

7.3.1.2.        Market Share & Forecast

7.3.1.2.1.           By Type

7.3.1.2.2.           By Technology

7.3.1.2.3.           By Installation Type

7.3.1.2.4.           By Application

7.3.2.    United Kingdom HVDC Capacitor Market Outlook

7.3.2.1.        Market Size & Forecast

7.3.2.1.1.           By Value

7.3.2.2.        Market Share & Forecast

7.3.2.2.1.           By Type

7.3.2.2.2.           By Technology

7.3.2.2.3.           By Installation Type

7.3.2.2.4.           By Application

7.3.3.    Italy HVDC Capacitor Market Outlook

7.3.3.1.        Market Size & Forecast

7.3.3.1.1.           By Value

7.3.3.2.        Market Share & Forecast

7.3.3.2.1.           By Type

7.3.3.2.2.           By Technology

7.3.3.2.3.           By Installation Type

7.3.3.2.4.           By Application

7.3.4.    France HVDC Capacitor Market Outlook

7.3.4.1.        Market Size & Forecast

7.3.4.1.1.           By Value

7.3.4.2.        Market Share & Forecast

7.3.4.2.1.           By Type

7.3.4.2.2.           By Technology

7.3.4.2.3.           By Installation Type

7.3.4.2.4.           By Application

7.3.5.    Spain HVDC Capacitor Market Outlook

7.3.5.1.        Market Size & Forecast

7.3.5.1.1.           By Value

7.3.5.2.        Market Share & Forecast

7.3.5.2.1.           By Type

7.3.5.2.2.           By Technology

7.3.5.2.3.           By Installation Type

7.3.5.2.4.           By Application

8.    Asia-Pacific HVDC Capacitor Market Outlook

8.1.  Market Size & Forecast       

8.1.1.    By Value

8.2.  Market Share & Forecast

8.2.1.    By Type

8.2.2.    By Technology

8.2.3.    By Installation Type

8.2.4.    By Application

8.2.5.    By Country

8.3.  Asia-Pacific: Country Analysis

8.3.1.    China HVDC Capacitor Market Outlook

8.3.1.1.        Market Size & Forecast

8.3.1.1.1.           By Value

8.3.1.2.        Market Share & Forecast

8.3.1.2.1.           By Type

8.3.1.2.2.           By Technology

8.3.1.2.3.           By Installation Type

8.3.1.2.4.           By Application

8.3.2.    India HVDC Capacitor Market Outlook

8.3.2.1.        Market Size & Forecast

8.3.2.1.1.           By Value

8.3.2.2.        Market Share & Forecast

8.3.2.2.1.           By Type

8.3.2.2.2.           By Technology

8.3.2.2.3.           By Installation Type

8.3.2.2.4.           By Application

8.3.3.    Japan HVDC Capacitor Market Outlook

8.3.3.1.        Market Size & Forecast

8.3.3.1.1.           By Value

8.3.3.2.        Market Share & Forecast

8.3.3.2.1.           By Type

8.3.3.2.2.           By Technology

8.3.3.2.3.           By Installation Type

8.3.3.2.4.           By Application

8.3.4.    South Korea HVDC Capacitor Market Outlook

8.3.4.1.        Market Size & Forecast

8.3.4.1.1.           By Value

8.3.4.2.        Market Share & Forecast

8.3.4.2.1.           By Type

8.3.4.2.2.           By Technology

8.3.4.2.3.           By Installation Type

8.3.4.2.4.           By Application

8.3.5.    Australia HVDC Capacitor Market Outlook

8.3.5.1.        Market Size & Forecast

8.3.5.1.1.           By Value

8.3.5.2.        Market Share & Forecast

8.3.5.2.1.           By Type

8.3.5.2.2.           By Technology

8.3.5.2.3.           By Installation Type

8.3.5.2.4.           By Application

9.    South America HVDC Capacitor Market Outlook

9.1.  Market Size & Forecast       

9.1.1.    By Value

9.2.  Market Share & Forecast

9.2.1.    By Type

9.2.2.    By Technology

9.2.3.    By Installation Type

9.2.4.    By Application

9.2.5.    By Country

9.3.  South America: Country Analysis

9.3.1.    Brazil HVDC Capacitor Market Outlook

9.3.1.1.        Market Size & Forecast

9.3.1.1.1.           By Value

9.3.1.2.        Market Share & Forecast

9.3.1.2.1.           By Type

9.3.1.2.2.           By Technology

9.3.1.2.3.           By Installation Type

9.3.1.2.4.           By Application

9.3.2.    Argentina HVDC Capacitor Market Outlook

9.3.2.1.        Market Size & Forecast

9.3.2.1.1.           By Value

9.3.2.2.        Market Share & Forecast

9.3.2.2.1.           By Type

9.3.2.2.2.           By Technology

9.3.2.2.3.           By Installation Type

9.3.2.2.4.           By Application

9.3.3.    Colombia HVDC Capacitor Market Outlook

9.3.3.1.        Market Size & Forecast

9.3.3.1.1.           By Value

9.3.3.2.        Market Share & Forecast

9.3.3.2.1.           By Type

9.3.3.2.2.           By Technology

9.3.3.2.3.           By Installation Type

9.3.3.2.4.           By Application

10. Middle East and Africa HVDC Capacitor Market Outlook

10.1.             Market Size & Forecast        

10.1.1. By Value

10.2.             Market Share & Forecast

10.2.1. By Type

10.2.2. By Technology

10.2.3. By Installation Type

10.2.4. By Application

10.2.5. By Country

10.3.             Middle East and Africa: Country Analysis

10.3.1. South Africa HVDC Capacitor Market Outlook

10.3.1.1.     Market Size & Forecast

10.3.1.1.1.         By Value

10.3.1.2.     Market Share & Forecast

10.3.1.2.1.         By Type

10.3.1.2.2.         By Technology

10.3.1.2.3.         By Installation Type

10.3.1.2.4.         By Application

10.3.2. Saudi Arabia HVDC Capacitor Market Outlook

10.3.2.1.     Market Size & Forecast

10.3.2.1.1.         By Value

10.3.2.2.     Market Share & Forecast

10.3.2.2.1.         By Type

10.3.2.2.2.         By Technology

10.3.2.2.3.         By Installation Type

10.3.2.2.4.         By Application

10.3.3. UAE HVDC Capacitor Market Outlook

10.3.3.1.     Market Size & Forecast

10.3.3.1.1.         By Value

10.3.3.2.     Market Share & Forecast

10.3.3.2.1.         By Type

10.3.3.2.2.         By Technology

10.3.3.2.3.         By Installation Type

10.3.3.2.4.         By Application

11. Market Dynamics

12. Market Trends & Developments

13. Competitive Landscape

13.1.   Hitachi, Ltd

13.2.   General Electric Company

13.3.   TDK Corporation

13.4.   Eaton Corporation plc

13.5.   KYOCERA Corporation

13.6.   YAGEO Corporation

13.7.   Vishay Intertechnology, Inc.

13.8.   ABB Ltd

13.9.   Nissin electric (Wuxi) Co., Ltd.

13.10.    Littelfuse, Inc

14. Strategic Recommendations

15. About Us & Disclaimer

Figures and Tables

Frequently asked questions

Frequently asked questions

The market size of the Global HVDC Capacitor Market was estimated to be USD 2.08 billion in 2022

The Energy & Power segment had the largest market share in 2022 & expected to maintain in the forecast period. The energy and power sector has witnessed a substantial shift towards renewable energy sources, such as wind and solar power. These renewable sources often generate electricity in remote areas where transmission over long distances is required. HVDC technology is the preferred choice for efficiently transmitting this power over extended distances. Capacitors are critical components in HVDC systems that ensure the stability and reliability of the energy transmission.

The Aluminum Electrolytic Capacitor segment had the largest market share in 2022 and is projected to experience rapid growth during the forecast period. Aluminum electrolytic capacitors are known for their ability to handle high voltage levels, making them suitable for use in HVDC systems, which often operate at elevated voltages.

Increasing focus on improving grid infrastructure to make electricity more widely available and growing demand for uninterrupted power in data centers & electric vehicles are the major drivers of the Global HVDC Capacitor Market.

Related Reports