Main Content start here
Main Layout
Report Description

Report Description

Forecast Period

2024-2028

Market Size (2022)

USD 890.61 million

CAGR (2023-2028)

3.16%

Fastest Growing Segment

Chemicals

Largest Market

North America


Market Overview

The Global Heat Recovery Steam Generator Market reached a size of USD 890.61 million in 2022 and is projected to grow to USD 1317.59 million by 2028, with a CAGR of 3.16% through 2028. The rapid urbanization and industrial growth have significantly increased the demand for energy, driving the global heat recovery steam generator (HRSG) market. The need for efficient energy management to optimize resource utilization has emerged as a prominent factor. Moreover, the market has been propelled by the escalating electricity prices and the demand for more effective power generation processes. Additionally, the implementation of stringent government regulations to reduce carbon footprint and the growing environmental awareness have contributed to the widespread adoption of HRSGs across industries. The popularity of HRSGs among energy-efficient sectors can be attributed to their ability to generate clean energy.

Key Market Drivers

Increasing Demand for Energy Efficiency and Sustainability   

One of the key drivers propelling the Global Heat Recovery Steam Generator (HRSG) Market is the increasing global demand for energy efficiency and sustainability in industrial processes and power generation. With growing concerns about climate change, environmental impact, and resource scarcity, industries and power plants are actively seeking ways to optimize energy utilization and reduce emissions. HRSGs play a pivotal role in achieving these objectives by enabling the recovery of waste heat from various sources and converting it into valuable steam energy. The concept of energy efficiency extends beyond resource conservation; it also encompasses maximizing energy output from a given input. Through integration into combined cycle power plants or industrial processes, HRSGs facilitate the utilization of waste heat that would otherwise be lost. This results in improved overall system efficiency, reduced fuel consumption, and decreased greenhouse gas emissions. Furthermore, the sustainability aspect underscores the significance of HRSGs. By recovering waste heat and generating additional energy without additional fuel consumption, HRSGs contribute to a more sustainable energy mix. This aligns with global efforts to transition away from fossil fuels and reduce the carbon footprint of energy-intensive operations. Governments and regulatory bodies worldwide are implementing policies and incentives to promote the adoption of energy-efficient technologies. International agreements such as the Paris Agreement have created a sense of urgency, prompting industries to explore solutions like HRSGs that not only enhance efficiency but also align with sustainability targets. As industries and power generation continue to prioritize energy efficiency and sustainability, the demand for HRSG technology is expected to remain strong, driving market growth.

Expansion of Combined Cycle Power Generation   

The growth of the Global Heat Recovery Steam Generator (HRSG) Market is strongly influenced by the increasing adoption of combined cycle power generation. Combined cycle power plants, comprising gas turbines and steam turbines, are highly valued for their efficiency and flexibility. HRSGs play a crucial role in these plants by capturing waste heat from gas turbines and converting it into steam, which drives a secondary steam turbine for additional power generation. The efficiency of combined cycle power plants stems from extracting energy from both the gas turbine's exhaust and the steam turbine's condenser. HRSGs contribute to this efficiency by converting wasted heat into useful energy, resulting in higher thermal efficiency and lower fuel consumption compared to traditional power plants. The expansion of combined cycle power generation is driven by multiple factors. Firstly, the flexibility of these plants allows them to adapt to both baseload and peaking power generation, accommodating fluctuations in electricity demand. Secondly, the increasing use of gas-fired power generation, particularly in regions like North America, creates a favorable environment for combined cycle plants and HRSG technology. Furthermore, the integration of renewable energy sources, such as solar and wind power, with gas turbines is being explored to create hybrid power systems. HRSGs can complement intermittent renewables by providing steady and reliable steam generation, thereby enhancing the overall efficiency and reliability of the energy mix. As the demand for efficient and flexible power generation continues to rise, the adoption of combined cycle plants and HRSGs is expected to drive the expansion of the HRSG market.

 

Download Free Sample Report

Key Market Challenges

Technological Complexity and Efficiency Enhancement       

One primary challenge lies in designing HRSGs that can efficiently capture and transfer waste heat while minimizing energy losses. This entails engineering intricate heat exchange systems, selecting appropriate materials, and managing fluid dynamics within the generator. Achieving optimal heat transfer and minimizing heat loss necessitates a profound understanding of thermodynamics and fluid mechanics, leading to intricate designs that require specialized expertise. Furthermore, HRSGs must adapt to varying operating conditions, including load changes, fuel composition fluctuations, and temperature variations. This requires advanced control systems capable of dynamically adjusting steam generation parameters to maintain efficient performance. Balancing the demands of flexibility, efficiency, and operational stability presents an ongoing challenge for HRSG manufacturers and operators. The ongoing pursuit of efficiency enhancement is another aspect of this challenge. As industries and power plants strive to maximize energy utilization and minimize emissions, HRSGs must continuously evolve to achieve higher thermal efficiency levels. Incorporating innovative materials, advanced heat exchanger designs, and improved control strategies is imperative to keep up with efficiency expectations and regulatory requirements.

Key Market Trends

Flexible Integration and Hybrid Power Systems    

The use of flexible integration and hybrid power systems is reshaping the Global Heat Recovery Steam Generator (HRSG) Market. As the energy landscape evolves and diversifies, HRSGs are increasingly being integrated into hybrid power plants that combine multiple energy sources, such as renewables and conventional fossil fuels. Hybrid power systems offer advantages such as enhanced operational flexibility, increased efficiency, and reduced environmental impact. HRSGs play a crucial role in these systems by effectively utilizing waste heat generated from gas turbines or other sources, contributing to overall efficiency improvement. One manifestation of this trend is the integration of HRSGs with renewable energy sources, such as solar and wind power. These variable energy sources can be complemented by HRSGs, which provide stable steam generation to supplement intermittent renewables. This synergy enhances the reliability of power supply and minimizes the need for additional backup systems. Another aspect involves the coupling of HRSGs with energy storage technologies. Advanced energy storage solutions, such as batteries and thermal storage systems, can buffer the fluctuating nature of renewable energy sources. HRSGs can then efficiently convert stored thermal energy into steam, providing continuous power generation even when renewables are not producing energy. Hybrid power systems require sophisticated control strategies to optimize the operation of different components. The ability to seamlessly transition between energy sources while maintaining grid stability and efficiency is a critical challenge in realizing the potential of this trend. As the trend of flexible integration and hybrid power systems gains momentum, the HRSG market will experience a demand for adaptable designs, advanced control systems, and comprehensive engineering expertise. Collaborations between HRSG manufacturers, renewable energy companies, and control system developers will be essential in maximizing the benefits of hybrid power systems.

Segmental Insights

Design Insights

Horizontal Drum Units segment is expected to dominate the market during the forecast period. Horizontal drum HRSGs are designed with a horizontal orientation of the steam drums, as opposed to the vertical arrangement found in vertical drum HRSGs. This design choice offers several advantages, including enhanced natural circulation of water and steam, improved heat transfer efficiency, and the potential for reduced structural stress. The horizontal drum configuration allows for more uniform distribution of the steam-water mixture, aiding in better separation of steam and water phases. These HRSGs consist of various pressure components, such as economizers, evaporators, and superheaters, interconnected by horizontal headers. This configuration facilitates efficient heat exchange and steam generation, contributing to higher overall thermal efficiency. The horizontal drum design promotes efficient heat transfer due to the natural circulation of water and steam, resulting in improved energy conversion and increased overall thermal efficiency. Horizontal drum HRSGs are renowned for their flexibility in accommodating various operating conditions and load changes, making them suitable for both base load and peaking power generation. They find application in a range of industries and power generation scenarios, commonly used in combined cycle power plants to recover waste heat from gas turbines and generate steam for additional electricity generation. Moreover, they are employed in cogeneration plants, industrial processes, and district heating applications.

End-user Insights

Utility segment is expected to dominate the market during the forecast period. HRSGs are extensively utilized in utility-scale power generation, particularly in combined cycle power plants. In a combined cycle configuration, gas turbines are employed to generate electricity through the combustion of natural gas. The waste heat produced by these turbines is harnessed by HRSGs, which convert it into steam. This steam is then utilized to drive a steam turbine, thereby generating additional electricity. The symbiotic relationship between gas and steam turbines in combined cycle plants significantly enhances overall efficiency and reduces fuel consumption when compared to conventional power plants. HRSGs play a crucial role in the utility segment's objective of maximizing energy efficiency. By recovering waste heat from gas turbines and utilizing it for steam generation, HRSGs optimize the overall conversion of energy from fuel to electricity. This improved efficiency leads to reduced fuel consumption, resulting in cost savings for utilities. HRSGs empower utilities to generate more electricity from the same amount of fuel, thereby optimizing operational costs.


Download Free Sample Report

Regional Insights

North America is expected to dominate the market during the forecast period. North America plays a prominent role in the HRSG market, driven by its well-established industrial sector, robust energy infrastructure, and growing focus on energy efficiency and emissions reduction. HRSGs are essential components of combined cycle power plants, which are prevalent in the region's energy generation landscape. These plants integrate gas turbines and steam turbines to optimize energy conversion and efficiency. The region is undergoing a shift towards cleaner and more efficient energy sources. HRSGs are key to this transition as they enable the recovery of waste heat from gas turbines, reducing fuel consumption and emissions. North America's abundant natural gas resources have resulted in a significant rise in gas-fired power generation. HRSGs are utilized to capture waste heat from these gas turbines, enhancing the overall efficiency of power plants and contributing to a more sustainable energy mix. The integration of HRSGs with renewable energy sources is a growing trend. Hybrid power systems that combine HRSGs with solar or wind power are being explored to improve energy resilience and optimize energy utilization.

Recent Developments

  • On 13, 2021, GE signed an EPC contract with Summit Meghnaghat-II Power Company Limited (SMPCL). As per the turnkey EPC contract, GE will provide a gas turbine, three-phase level with reheater drum type heat recovery steam generator (HRSG), steam and gas turbine, along with the balance of plant solutions.
  • On January 13, 2021, GE secured the order to deliver power plant equipment for the Tongyeong combined cycle power plant in South Korea. The company will supply its steam turbine, gas turbine, two heat recovery steam generators (HRSG), and three G65 generators.
  • In November 2020, BHI Co. Ltd completed the purchase of the Forster Heat Recovery Steam Generator (HRSG) technology from the subsidiary of Wood. This acquisition strengthens BHI Co. Ltd's position as a major supplier of power generation equipment.
  • In November 2020, GE secured the order to supply power generation equipment for Naepo Green Energy Co. Ltd heating plant in Naepo City, South Korea. The order includes the supply of a heat recovery steam generator (HRSG), gas turbine with H65 generator, one GE condenser, and equipment maintenance for 19 years.

Key Market Players

  • Thermax Limited
  • Siemens AG
  • Mitsubishi Hitachi Power Systems Ltd
  • AC BOILERS SpA
  • Kelvion Holding GmbH
  • General Electric Company
  • Alfa Laval AB
  • Mersen SA
  • Sofinter SpA
  • Alstom SA

By Design

By Application

  By Power Rating

By End-user

By Region

       Horizontal Drum Units

       Vertical Drum Units

 

       Cogeneration

       Combined Heat & Power

       Up to 30 MW

       31 MW - 100 MW

       Utility

       Chemicals

       North America

       Europe

       South America

       Middle East &

Africa

       Asia Pacific


Report Scope:

In this report, the Global Heat Recovery Steam Generator Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

·         Global Heat Recovery Steam Generator Market, By Design:

o   Horizontal Drum Units

o   Vertical Drum Units   

·         Global Heat Recovery Steam Generator Market, By Application:

o   Cogeneration

o   Combined Heat & Power   

·         Global Heat Recovery Steam Generator Market, By Power Rating:

o   Up to 30 MW

o   31 MW - 100 MW   

·         Global Heat Recovery Steam Generator Market, By End-user:

o   Utility

o   Chemicals     

·         Global Heat Recovery Steam Generator Market, By Region:

o   North America

o   Europe

o   Latin America

o   Middle East & Africa

o   Asia Pacific

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Heat Recovery Steam Generator Market.

Available Customizations:

Global Heat Recovery Steam Generator Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Global Heat Recovery Steam Generator Market is an upcoming report to be released soon. If you wish an early delivery of this report or want to confirm the date of release, please contact us at [email protected]

Table of content

Table of content

1.    Product Overview

1.1.    Market Definition

1.2.    Scope of the Market

1.2.1.    Markets Covered

1.2.2.    Years Considered for Study

1.2.3.    Key Market Segmentations

2.    Research Methodology

2.1.    Baseline Methodology

2.2.    Key Industry Partners

2.3.    Major Association and Secondary Sources

2.4.    Forecasting Methodology

2.5.    Data Triangulation & Validation

2.6.    Assumptions and Limitations

3.    Executive Summary

4.    Impact of COVID-19 on Global Heat Recovery Steam Generator Market

5.    Voice of Customer

6.    Global Heat Recovery Steam Generator Market Overview

7.    Global Heat Recovery Steam Generator Market Outlook

7.1.    Market Size & Forecast

7.1.1.  By Value

7.2.    Market Share & Forecast

7.2.1.  By Design (Horizontal Drum Units, Vertical Drum Units)

7.2.2.  By Application (Cogeneration, Combined Heat & Power)

7.2.3.  By Power Rating (Up to 30 MW, 31 MW - 100 MW)

7.2.4.  By End-user (Utility, Chemicals)

7.2.5.  By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)

7.3.    By Company (2022)

7.4.    Market Map

8.    North America Heat Recovery Steam Generator Market Outlook

8.1.    Market Size & Forecast

8.1.1.  By Value

8.2.    Market Share & Forecast

8.2.1.  By Design

8.2.2.  By Application

8.2.3.  By Power Rating

8.2.4.  By End-user

8.2.5.  By Country

8.2.5.1.        United States Heat Recovery Steam Generator Market Outlook

8.2.5.1.1.        Market Size & Forecast

8.2.5.1.1.1.    By Value

8.2.5.1.2.        Market Share & Forecast

8.2.5.1.2.1.    By Design

8.2.5.1.2.2.    By Application

8.2.5.1.2.3.    By Power Rating

8.2.5.1.2.4.    By End-user

8.2.5.2.        Canada Heat Recovery Steam Generator Market Outlook

8.2.5.2.1.        Market Size & Forecast

8.2.5.2.1.1.    By Value

8.2.5.2.2.        Market Share & Forecast

8.2.5.2.2.1.    By Design

8.2.5.2.2.2.    By Application

8.2.5.2.2.3.    By Power Rating

8.2.5.2.2.4.    By End-user

8.2.5.3.        Mexico Heat Recovery Steam Generator Market Outlook

8.2.5.3.1.        Market Size & Forecast

8.2.5.3.1.1.    By Value

8.2.5.3.2.        Market Share & Forecast

8.2.5.3.2.1.    By Design

8.2.5.3.2.2.    By Application

8.2.5.3.2.3.    By Power Rating

8.2.5.3.2.4.    By End-user

9.    Europe Heat Recovery Steam Generator Market Outlook

9.1.    Market Size & Forecast

9.1.1.  By Value

9.2.    Market Share & Forecast

9.2.1.  By Design

9.2.2.  By Application

9.2.3.  By Power Rating

9.2.4.  By End-user

9.2.5.  By Country

9.2.5.1.        Germany Heat Recovery Steam Generator Market Outlook

9.2.5.1.1.        Market Size & Forecast

9.2.5.1.1.1.    By Value

9.2.5.1.2.        Market Share & Forecast

9.2.5.1.2.1.    By Design

9.2.5.1.2.2.    By Application

9.2.5.1.2.3.    By Power Rating

9.2.5.1.2.4.    By End-user

9.2.5.2.        France Heat Recovery Steam Generator Market Outlook

9.2.5.2.1.        Market Size & Forecast

9.2.5.2.1.1.    By Value

9.2.5.2.2.        Market Share & Forecast

9.2.5.2.2.1.    By Design

9.2.5.2.2.2.    By Application

9.2.5.2.2.3.    By Power Rating

9.2.5.2.2.4.    By End-user

9.2.5.3.        United Kingdom Heat Recovery Steam Generator Market Outlook

9.2.5.3.1.        Market Size & Forecast

9.2.5.3.1.1.    By Value

9.2.5.3.2.        Market Share & Forecast

9.2.5.3.2.1.    By Design

9.2.5.3.2.2.    By Application

9.2.5.3.2.3.    By Power Rating

9.2.5.3.2.4.    By End-user

9.2.5.4.        Italy Heat Recovery Steam Generator Market Outlook

9.2.5.4.1.        Market Size & Forecast

9.2.5.4.1.1.    By Value

9.2.5.4.2.        Market Share & Forecast

9.2.5.4.2.1.    By Design

9.2.5.4.2.2.    By Application

9.2.5.4.2.3.    By Power Rating

9.2.5.4.2.4.    By End-user

9.2.5.5.        Spain Heat Recovery Steam Generator Market Outlook

9.2.5.5.1.        Market Size & Forecast

9.2.5.5.1.1.    By Value

9.2.5.5.2.        Market Share & Forecast

9.2.5.5.2.1.    By Design

9.2.5.5.2.2.    By Application

9.2.5.5.2.3.    By Power Rating

9.2.5.5.2.4.    By End-user

10. South America Heat Recovery Steam Generator Market Outlook

10.1. Market Size & Forecast

10.1.1.    By Value

10.2. Market Share & Forecast

10.2.1.    By Design

10.2.2.    By Application

10.2.3.    By Power Rating

10.2.4.    By End-user

10.2.5.    By Country

10.2.5.1.     Brazil Heat Recovery Steam Generator Market Outlook

10.2.5.1.1.     Market Size & Forecast

10.2.5.1.1.1. By Value

10.2.5.1.2.     Market Share & Forecast

10.2.5.1.2.1. By Design

10.2.5.1.2.2. By Application

10.2.5.1.2.3. By Power Rating

10.2.5.1.2.4. By End-user

10.2.5.2.     Colombia Heat Recovery Steam Generator Market Outlook

10.2.5.2.1.     Market Size & Forecast

10.2.5.2.1.1. By Value

10.2.5.2.2.     Market Share & Forecast

10.2.5.2.2.1. By Design

10.2.5.2.2.2. By Application

10.2.5.2.2.3. By Power Rating

10.2.5.2.2.4. By End-user

10.2.5.3.     Argentina Heat Recovery Steam Generator Market Outlook

10.2.5.3.1.     Market Size & Forecast

10.2.5.3.1.1. By Value

10.2.5.3.2.     Market Share & Forecast

10.2.5.3.2.1. By Design

10.2.5.3.2.2. By Application

10.2.5.3.2.3. By Power Rating

10.2.5.3.2.4. By End-user

11. Middle East & Africa Heat Recovery Steam Generator Market Outlook

11.1. Market Size & Forecast

11.1.1.    By Value

11.2. Market Share & Forecast

11.2.1.    By Design

11.2.2.    By Application

11.2.3.    By Power Rating

11.2.4.    By End-user

11.2.5.    By Country

11.2.5.1.     Saudi Arabia Heat Recovery Steam Generator Market Outlook

11.2.5.1.1.     Market Size & Forecast

11.2.5.1.1.1. By Value

11.2.5.1.2.     Market Share & Forecast

11.2.5.1.2.1. By Design

11.2.5.1.2.2. By Application

11.2.5.1.2.3. By Power Rating

11.2.5.1.2.4. By End-user

11.2.5.2.     UAE Heat Recovery Steam Generator Market Outlook

11.2.5.2.1.     Market Size & Forecast

11.2.5.2.1.1. By Value

11.2.5.2.2.     Market Share & Forecast

11.2.5.2.2.1. By Design

11.2.5.2.2.2. By Application

11.2.5.2.2.3. By Power Rating

11.2.5.2.2.4. By End-user

11.2.5.3.     South Africa Heat Recovery Steam Generator Market Outlook

11.2.5.3.1.     Market Size & Forecast Market

11.2.5.3.1.1. By Value

11.2.5.3.2.     Market Share & Forecast

11.2.5.3.2.1. By Design

11.2.5.3.2.2. By Application

11.2.5.3.2.3. By Power Rating

11.2.5.3.2.4. By End-user

12. Asia Pacific Heat Recovery Steam Generator Market Outlook

12.1. Market Size & Forecast

12.1.1.    By Value

12.2.   Market Share & Forecast

12.2.1.    By Design

12.2.2.    By Application

12.2.3.    By Power Rating

12.2.4.    By End-user

12.2.5.    By Country

12.2.5.1.     China Heat Recovery Steam Generator Market Outlook

12.2.5.1.1.     Market Size & Forecast

12.2.5.1.1.1. By Value

12.2.5.1.2.     Market Share & Forecast

12.2.5.1.2.1. By Design

12.2.5.1.2.2. By Application

12.2.5.1.2.3. By Power Rating

12.2.5.1.2.4. By End-user

12.2.5.2.     India Heat Recovery Steam Generator Market Outlook

12.2.5.2.1.     Market Size & Forecast

12.2.5.2.1.1. By Value

12.2.5.2.2.     Market Share & Forecast

12.2.5.2.2.1. By Design

12.2.5.2.2.2. By Application

12.2.5.2.2.3. By Power Rating

12.2.5.2.2.4. By End-user

12.2.5.3.     Japan Heat Recovery Steam Generator Market Outlook

12.2.5.3.1.     Market Size & Forecast

12.2.5.3.1.1. By Value

12.2.5.3.2.     Market Share & Forecast

12.2.5.3.2.1. By Design

12.2.5.3.2.2. By Application

12.2.5.3.2.3. By Power Rating

12.2.5.3.2.4. By End-user

12.2.5.4.     South Korea Heat Recovery Steam Generator Market Outlook

12.2.5.4.1.     Market Size & Forecast

12.2.5.4.1.1. By Value

12.2.5.4.2.     Market Share & Forecast

12.2.5.4.2.1. By Design

12.2.5.4.2.2. By Application

12.2.5.4.2.3. By Power Rating

12.2.5.4.2.4. By End-user

12.2.5.5.     Australia Heat Recovery Steam Generator Market Outlook

12.2.5.5.1.     Market Size & Forecast

12.2.5.5.1.1. By Value

12.2.5.5.2.     Market Share & Forecast

12.2.5.5.2.1. By Design

12.2.5.5.2.2. By Application

12.2.5.5.2.3. By Power Rating

12.2.5.5.2.4. By End-user

13. Market Dynamics

13.1.   Drivers

13.2.   Challenges

14. Market Trends and Developments

15. Company Profiles

15.1.   Thermax Limited

15.1.1.        Business Overview

15.1.2.        Key Revenue and Financials  

15.1.3.        Recent Developments

15.1.4.        Key Personnel

15.1.5.        Key Product/Services Offered

15.2.   Siemens AG

15.2.1.        Business Overview

15.2.2.        Key Revenue and Financials  

15.2.3.        Recent Developments

15.2.4.        Key Personnel

15.2.5.        Key Product/Services Offered

15.3.   Mitsubishi Hitachi Power Systems Ltd

15.3.1.        Business Overview

15.3.2.        Key Revenue and Financials  

15.3.3.        Recent Developments

15.3.4.        Key Personnel

15.3.5.        Key Product/Services Offered

15.4.   AC BOILERS SpA

15.4.1.        Business Overview

15.4.2.        Key Revenue and Financials  

15.4.3.        Recent Developments

15.4.4.        Key Personnel

15.4.5.        Key Product/Services Offered

15.5.   Kelvion Holding GmbH

15.5.1.        Business Overview

15.5.2.        Key Revenue and Financials  

15.5.3.        Recent Developments

15.5.4.        Key Personnel

15.5.5.        Key Product/Services Offered

15.6.   General Electric Company

15.6.1.        Business Overview

15.6.2.        Key Revenue and Financials  

15.6.3.        Recent Developments

15.6.4.        Key Personnel

15.6.5.        Key Product/Services Offered

15.7.   Alfa Laval AB

15.7.1.        Business Overview

15.7.2.        Key Revenue and Financials  

15.7.3.        Recent Developments

15.7.4.        Key Personnel

15.7.5.        Key Product/Services Offered

15.8.   Mersen SA

15.8.1.        Business Overview

15.8.2.        Key Revenue and Financials  

15.8.3.        Recent Developments

15.8.4.        Key Personnel

15.8.5.        Key Product/Services Offered

15.9.   Sofinter SpA

15.9.1.        Business Overview

15.9.2.        Key Revenue and Financials  

15.9.3.        Recent Developments

15.9.4.        Key Personnel

15.9.5.        Key Product/Services Offered

15.10.Alstom SA

15.10.1.     Business Overview

15.10.2.     Key Revenue and Financials  

15.10.3.     Recent Developments

15.10.4.     Key Personnel

15.10.5.     Key Product/Services Offered

16. Strategic Recommendations

17. About Us & Disclaimer

Figures and Tables

Frequently asked questions

Frequently asked questions

The market size of the Global Heat Recovery Steam Generator Market was USD 890.61 million in 2022.

The Horizontal Drum Units segment dominated the market in 2022 and is also expected to dominate the market during the forecast period. Horizontal drum HRSGs are designed with a horizontal orientation of the steam drums, as opposed to the vertical arrangement found in vertical drum HRSGs. This design choice offers several advantages, including enhanced natural circulation of water and steam, improved heat transfer efficiency, and the potential for reduced structural stress.

Technological Complexity and Efficiency Enhancement are some of the challenges in the Global Heat Recovery Steam Generator Market.

Expansion of Combined Cycle Power Generation and Increasing Demand for Energy Efficiency and Sustainability are some of the major drivers for the Global Heat Recovery Steam Generator Market.

Related Reports