Just like any other human activity, the food we produce through
traditional agricultural practices comes with a carbon cost. According to a
recent statistic by Nature
Food, global food production is around 17 billion metric tons,
equivalent to about 25% of greenhouse gas emissions annually. While
animal-based foods produce 57% of emissions, plant-based ones contribute to
nearly 29% of the emissions. Emissions from agricultural production are set to
increase in the coming years, owing to the rapid use of fertilizers and
pesticides to enhance crop yield, growing need to raise livestock, exploitation
of water resources, etc.
Various agricultural practices such as the application of
synthetic and organic fertilizers on soils, growth of nitrogen-fixing crops,
drainage of organic soils, and irrigation practices lead to the increased
emissions of nitrous oxide, which account for just over half of the greenhouse
gas emissions arising from the sector. Among the crop category, rice farming
accounts for around 12% of the total emissions, followed by wheat, sugarcane,
and maize production. Besides, livestock produces methane as a part of their
normal digestive process, representing over a quarter of emissions in the
agricultural sector. Other smaller sources of GHG emissions from the
agriculture sector include burning crop residues, rice cultivations, liming and
urea applications, etc. Beef production is the top emission contributor,
accounting for 25% of the total greenhouse gas emissions, followed by cow milk,
pork, and chicken meat.
In terms of region, South and Southeast Asia are the top
emitters of greenhouse gases from the agricultural sector. Countries like China
and India have large populations, which drives the need for more land
conversion to derive agricultural products. South America has the highest per
capita emissions due to its relatively large production of meat, particularly
beef.
Nitrous Oxide and Methane Emission and Trends
Nitrous Oxide is 300 times more potent than carbon dioxide at
heating the atmosphere and takes 114 years to disintegrate in the sky. About
three-quarters of the nitrogen emissions come from the agriculture sector. In
the last four decades, nitrogen dioxide emissions have increased by 30%,
primarily because of farmers' abundant use of synthetic fertilizers to boost
crop production. When farmers utilize large batches of fertilizers, plant roots
are not able to absorb all of it. Soil microbes convert the remaining fertilizer
from ammonia to nitrite, then nitrate, and finally, N2O as a by-product.
Precision agriculture techniques and remote sensing technology
can help farmers determine where and how much fertilizer to use, reducing
nitrogen dioxide emissions. Another way to limit N2O emissions is to use
nitrification inhibitors that suppress the ability of microbes to turn ammonia
into nitrate, thus impeding the creation of N2O and retaining nitrogen in the
plant for an extended period. The organic way is to encourage the growth of
desirable microbes that already exist in the soil for a greater amount of
natural nitrogen fixation by cutting down the use of pesticides. Microbes
produce less nitrous oxide in high-oxygen environments; hence no-till systems
can result in more organic carbon storage. Integrating drip irrigation with
reduced tillage can reduce lower NO2 emissions by 70% compared to
conventionally managed farmlands.
Methane is a primary contributor to the formation of
ground-level ozone, responsible for trapping heat and leading to global rising
temperatures. Methane is 80 times more potent at warming than carbon dioxide
and causes 1 million premature deaths every year. Ruminant livestock such as
cattle, sheep, buffalo, goats, deer, and camels have microbes that digest
coarse plant material and release methane as a by-product; hence they are
considered the primary source of methane emissions. The unstipulated demand for
animal protein arising from rapid population growth, economic development, and
urban migration is expected to increase by up to 70% by 2050, which would
further lead to more methane emissions. To reduce the belching problem, farmers
are shifting to feed additives that interrupt the microbial process in cows'
gut.
Rice cultivation accounts for nearly 12% of methane emissions
and 1.5% of GHG emissions. Methane is emitted by the microbes in rice paddies
that respire just like humans. Rice paddies are grown in flooded fields, and
the amount of water blocks the oxygen from getting to the soil, creating a
perfect condition for bacteria that release methane. As the global demand for
rice increases alongside the rising human population, the total methane
emissions will expand. Vietnam is working in collaboration with the
Coordinating Committee on Agricultural Chemicals (CCAC) to teach farmers to use
alternate wetting and drying methods to reduce water consumption and methane
emissions by 48% while increasing crop yields. Switching to more heat tolerant
rice varieties, draining rice paddies mid-season, and using different
fertilizers can reduce methane emissions.
How is Climate Change Affecting Agriculture?
Agricultural production and climate change are inextricably
linked. As Earth gets hotter, farming becomes difficult, which pushes farmers
to clear even more land to grow food. Climate change is adversely impacting
food security and terrestrial ecosystems and contributing to desertification
and land degradation in many parts of the world. The unprecedented surge in
temperature has led to an increased incidence of droughts, floods, irregular
precipitation patterns, heat waves, and other extreme happenings, whose impact
is visible on the agricultural sector. Abrupt changes in climatic conditions at
a rapid pace have threatened food security at a global scale.
Forests act as a sink to the increasing amount of carbon dioxide
in the atmosphere, but clearing forest land for more crop area has imbalanced
the natural process of the carbon cycle. The high carbon footprint has induced
an uneven climate pattern impacting agricultural production. Moreover, climate
change is resulting in desertification and nutrient-deficient soil due to
erosion from wind or water during floods, droughts, etc. According to a Global
Assessment of Land Degradation and Improvement (GLADA), a quarter of land on
the Earth is characterized as degraded. Over 15 billion tons of fertile soil
are lost annually due to anthropogenic activities and climate change. Flood
incidences have significantly increased in recent years, resulting in the
washout of topsoil and nutrients from the soil, leading to low productivity for
several years. The climate-related disturbances are impacting food
distribution, quality, and access.
How could the Future of Sustainable Farming Look Like?
Rising global emissions will only exacerbate the challenges and
create more severe food shortages, making global emissions impossible. The
international climate policy under the Paris Agreement's goal of restricting
the increase in global average temperature to well below 2°C above preindustrial
levels has increased scrutiny on the role of players in the agriculture sector
for climate change mitigation.
Here are some innovative farming practices that could change the
future of agriculture.
Organic Farming
Organic farming includes eco-friendly agricultural practices
without the use of synthetic fertilizers or pesticides. Many studies
demonstrate that eliminating synthetic nitrogen fertilizers could lower direct
global agricultural greenhouse gas emissions by up to 20%. Chloropicrin, one of
the commonly used fumigant pesticides, can increase nitrogen dioxide emissions
by 700-800%. Organic farming helps stabilize soil organic carbon and reduce
nitrous oxide emissions. As stewards of healthy soil, organic farmers can build
healthy soil and crops that can adapt to a changing climate. The sustainable
agriculture practice can increase water percolation by 15-20%, which can help
enhance crops' productivity in extreme weather like drought and flooding. The
worldwide adoption of diversified organic farming could help absorb more carbon
than the agricultural sector releases. Government of countries such as
Australia, Argentina, China, and United States are supporting organic
agriculture financially more than others for more environment and public
benefits, improvements to animal welfare, and better food quality and
nutrition. Besides, the growing demand for organic food among consumers are
pushing major food corporations to support the organic production and
availability of organic food.
Green Vertical Farming
Vertical farming refers to the practice of growing food indoors
in vertically stacked layers with full recycling of waste and emission
reduction from energy use improvements at its core. Green vertical farming can
reduce 70% less carbon dioxide compared to open field agriculture and provide
additional benefits of 90% less land use and 80-90% less water use. Vertical
farming reduces land use, maximizes space, increases productivity per unit
area, and addresses challenges such as deforestation and biodiversity loss.
Since vertical farms are constructed in or nearby urban areas, the distance
from farm to market is reduced considerably. Countries in the Middle East
region are employing green vertical farming to increase food security and
reduce dependency on other nations for agricultural goods. Recently, Emirates
have opened 330,000 sq. ft. facility with an investment of USD40 million to
yield over one million kilograms of leafy greens annually. More such
initiatives by the government and private organizations could lead to their
increased adoption in the coming years.
Cellular Agriculture
Cellular agriculture might be the perfect sustainable solution
to meet the expanding demand for beef and other ruminant meats. As consumer
preferences are shifting towards more deliberate food choices, cellular
agriculture can play an essential role in fulfilling nutritional requirements
while taking pressure off the current food production system. Cellular
agriculture involves using cells from plants and animals to make agricultural
products like seafood, dairy, and other protein-rich foods. Techniques such as
precision fermentation and tissue engineering are employed to make cell-based
or cultivated meat. Cellular agriculture can result in a dramatic reduction in
animal use and slaughter and conserve the enormous amounts of resources
required to feed plant protein to the animals to produce animal proteins.
According to TechSci Research report on
“Regenerative Agriculture Market- Global Industry Size, Share, Trends,
Competition, Opportunities and Forecast, 2017-2027, Segmented By Practice
(Holistic Planned Grazing, Agroforestry, Pasture Cropping, Silvopasture,
Agroecology, Aquaculture, Others), By Application (Biodiversity, Nutrient
Cycling, Carbon Sequestration, Others), By Region”, the regenerative agriculture market
is expected to register an impressive growth in the forecast period. The market
growth can be attributed to the rising awareness towards the importance of soil
health management, climate change, and soil conservation.
According to another TechSci report on
“Precision Fermentation Market - Global Industry Size, Share, Trends,
Opportunity, and Forecast, 2017-2027 Segmented By Ingredient Produced (Whey
& Casein Protein, Egg White, Collagen Protein, Heme Protein, Others), By
Microbes (Yeast, Algae, Bacteria, Others), By End User Industry (Food &
Beverage, Pharmaceutical, Cosmetic, Others), and By Region”, the global precision fermentation market
is expected to grow at a formidable rate during the forecast period. The market
growth can be attributed to the decreasing dependency on animal-based food
products and rapid adoption of sustainable agricultural practices to address
issues like climate change and land degradation.
According to another TechSci Research
report on “Cellular Agriculture Market – Global Industry Size, Share, Trends,
Opportunity, and Forecast, 2017-2027, Segmented By Technology (Cell Lines, Growth
Media, Scaffold Materials, 3D Tissue Systems, Others), By Application (Dairy
Products, Gelatin, Fish, Insects, Others), By End User Industry (Food &
Beverages, Textile, Pharmaceuticals, Others), and Region”, the global cellular agriculture market
is anticipated to register robust growth during the forecast period. The market
growth can be attributed to the increasing dependence for animal-based food
products from various end-user industries such as food and beverages,
pharmaceuticals, textiles, etc.